这些无人机可以在标准频率和移位频率的范围内运行720-1020 MHz。硬件复合物使无人机在不到3分钟的时间内在NSU的帮助下出发前更改其控制频率。为了确保控制系统的最佳操作,无人机提供了一组在频带中运行的快速可更换天线,这些天线最适合选定的无人机控制模式。所有四个无人机型号均配备了三种类型的摄像头:白天,光敏(暮光)和带有传入的视频处理模块的热成像摄像头。使用高质量电池提供了最佳电池组件,其容量分别为8400 mAh和12600 mAh。
主动上肢外骨骼是神经恢复的潜在强大工具。该潜力取决于几种基本控制模式,其中一种是透明度。在这种控制模式下,外骨骼必须遵循人类运动而不会改变它,从理论上讲,这意味着无效的相互作用工作。达到透明度的水平高,尽管不完美,既需要一种适当的控制方法,又需要对外骨骼对人类运动的影响进行深入评估。本文基于识别外骨骼动力学的识别,或者是在力反馈控制或结合下引入了三种不同的“透明”控制器的评估。因此,这些控制器可能会通过设计明显诱导不同水平的透明度。进行的调查可以更好地理解人类如何适应一定是不完事的透明控制器。一组14名参与者受到这三个控制者的束缚,同时在副臂平面进行运动。随后的分析是根据相互作用,运动学,肌电图和人体工程学反馈问卷进行的。结果表明,在执行透明的控制器较少的情况下,参与者的策略往往会引起相对较高的相互作用工作,并具有较高的肌肉活动,从而导致运动学指标的敏感性很小。换句话说,截然不同的残留互动工作并不一定会引起非常不同的运动运动学。这样的行为可以通过自然的人类倾向来解释以维护其首选的运动学的努力,应在将来的透明控制器评估中考虑到这一点。
Anita 配备大型触摸屏面板。先进的软件可轻松操作:• 轻松编程简单和复杂的循环• 立即启动循环,• 通过图形和表格显示进行过程监控,• 交互式选择温度控制模式:最热、平均……• 在两个独立通道上进行热量控制,用于 1 个维修(1 个或 2 个加热区)或 2 个独立维修,• 6000 瓦/220 伏大加热容量• 维修鉴定袋真空感应;安装 2 个传感器,• 面板打印机,• 毯式电源检查和短路检测• USB 连接:2 个端口• 自动 pdf 报告• 通过对话和软件调整操作轻松进行校准。
频率范围: 10W 时为 1.3 至 1.55 GHz 输出功率: 5W 时为 4.4 至 5 GHz 10W 时为 5.0 至 5.3 GHz 2W 时为 6.8 至 7.3 GHz 控制模式: 手动:3 个输出功率级别 远程:通过 HDT 发射器 输入电平:+13 dBm 至 +20 dBm 连接器: 电源:MS3112E12-3P 远程:D38999/24 2 x N 型母头(50 欧姆) 电源电压:9 - 36 V DC 保护功能:反向电压反向 RF 外壳:铣削铝 功耗:取决于输出功率 工作温度范围:-20 至 50 ºC 机械尺寸:251 x 127.5 x 94.5 mm 重量:约2.5 公斤
Anita 配备大型触摸屏面板。先进的软件可轻松操作:• 轻松编程简单和复杂的循环 • 立即启动循环,• 通过图形和表格演示进行过程监控,• 交互式选择温度控制模式:最热、平均……• 在两个独立通道上进行热量控制,用于 1 次维修(1 个或 2 个加热区)或 2 次单独维修,• 6000 瓦/220 伏大加热容量 • 用于维修鉴定的袋式真空感应;安装了 2 个传感器,• 面板打印机,• 全面功率检查和短路检测 • USB 连接:2 个端口 • 自动 pdf 报告 • 通过对话和软件调整操作轻松进行校准。
弹道飞行任务的导航通常相对简单。除了走向暴力毁灭之外,这次任务还有许多非常规方面,给导航团队带来了有趣的挑战:部分任务的推进剂预算紧张,没有反作用轮,导致航天器噪音大,导航团队不得不严重依赖 Delta 差分单向测距测量来确定视线外的 delta-V,以及在新的推进控制模式下,任务最后 30 天的关键操作。光学导航是这次任务成功的关键因素,有助于确定航天器和目标星历表,从而实现精确的瞄准机动。在任务最后几周做出战略决策后,DART 可以轻松地撞击较大的小行星 Didymos,这增加了撞击其卫星 Dimorphos 的可能性。
• PowerFlex 700L 变频器专为从最简单的速度控制到最苛刻的扭矩控制的各种应用而设计,可与 PowerFlex 700 矢量控制或 PowerFlex 700S 控制一起使用。 • 出色的开环或闭环速度调节功能,适用于从风扇和泵到精确卷绕机控制的各种应用。 • 出色的扭矩产生和严格的扭矩调节功能,适用于挤出机、卷筒纸处理和试验台等要求苛刻的应用。 • 扭矩输入的快速更新时间适合高性能应用。 • 所有这些灵活性都可通过多种控制模式实现:V/Hz 控制、无传感器矢量、采用 FORCE 技术的矢量控制和永磁控制(仅限 700S 控制)。
数字电子发动机控制 (DEEC) 是为 FlOO-PW-100 涡扇发动机开发的全权限数字发动机控制;它已在美国宇航局艾姆斯研究中心的德莱顿飞行研究设施 (DFRF) 上对一架 F-15 飞机进行了飞行测试。飞行测试的目的是评估整个 F-15 飞行包线内的 DEEC 硬件和软件。实施了新的实时数据缩减和数据显示系统。开发了新的测试技术并加强了推进测试工程师和飞行员之间的协调,从而有效利用了测试时间,减少了飞行员的工作量,并大大提高了数据质量。演示了发动机压力比 (EPR) 控制模式。非增强油门瞬变和发动机性能令人满意。
所有操作控制的选择都通过前面板上的按键进行,显示屏会提示用户完成每个步骤。参数设置完成后,只需移除前挡板后面的跳线即可锁定参数。用户可以选择控制模式和参数、显示分辨率(1 或 0.1°)和单位(°F/°C)。操作员还可以利用范围功能,该功能限制了可以选择设定点的范围,或锁定用户无法更改设定点。新的单设定点控制器具有后部终端。CN9000A 型号的可选第二设定点和输出可设置为比例、开关或锁存限制控制,并可设置为跟踪或非跟踪设定点。循环时间、比例带和开关死区均独立于主设定点设置。
频率和 2,000 - 2,400 MHz 15 瓦 输出功率: 2,300 - 2,700 MHz 10 瓦 3,300 - 3,600 MHz 10 瓦 输入电平: +13 dBm 至 +20 dBm (ALC) 控制模式: 手动: 3 个输出功率级别 遥控: 通过 HDT 发射机连接器: 电源: MS3112E12-3P 遥控: D38999/24 2 x N 型母头 (50 ohms) 肩部抑制: >35 dB @ 15 瓦 >40 dB @ 10 瓦 电源电压: 9 - 36 V DC 保护功能: 反向电压 反向 RF 过压 外壳: 铣削铝防水 功耗: 80 W 工作温度范围: -20 至 50 ºC 机械尺寸: 251 x 127.5 x 94.6 mm重量:2.5 公斤