随着全球对电动汽车的需求不断增长,汽车制造商将需要大幅提高电池生产能力。杜尔系统公司 (Dürr Systems Inc.) 已准备好推出改变游戏规则的 GigaCoater,这是一款新型双面同时电极涂层机,也是世界上第一台,为其同时双面涂层机产品组合增添了新成员。这款新型杜尔机型采用西门子技术支持张力控制涂层功能,将其行业领先的电极涂层设备提升到新的精度、效率和质量水平,同时为客户大幅降低运营成本。
纳米结构薄膜具有改变表面性质的能力,当它们能够生成具有可控孔隙率的层时,这种能力甚至更强。与致密层相比,这些(多)层的隐式完整性较低,阻碍了获得亚微米厚度(薄片)的电子透明切片,这成为(扫描)透射电子显微镜((S)TEM)研究稀缺的主要原因之一。意识到这一机会,本报告概述了应用各种(S)TEM 技术研究纳米结构和多孔光子表面的可能性。提供了几个工作示例来说明在通过斜角物理过程制备的中孔薄膜以及通过外延方法制备的氮化物纳米线阵列的情况下可以获得的信息类型。将证明这种方法能够实现几项开创性的工作,这些工作对于完成此类孔隙率控制涂层的表征至关重要。由于 (S)TEM 的突破性进展,我们得以解决诸如电子透明样品的制备及其结构、形态、界面和成分的高级表征等各种主题,这些突破性进展允许在微观和纳米层面上获得高分辨率成像、光谱或断层扫描。最后,将 (S)TEM 确立为多孔纳米结构皮肤的高级结构、化学和形态表征的参考工具,将开辟新的视野,提供更好和新的见解,从而优化此类结构的制造和设计。
抽象的钻石涂层具有许多出色的特性,使其成为高性能表面应用的理想材料。但是,没有革命性的表面修改方法,钻石涂层的表面粗糙度和摩擦行为会阻碍其满足高级工程表面要求要求的能力。这项研究提出了在涂料界面上的热应力控制,并通过激光诱导和机械切割证明了在常规钻石涂层表面上进行精确石墨化的新过程,而不会损害金属底物。通过实验和模拟,阐明了表面石墨化和界面热应力的影响机制,最终使钻石涂层表面向石墨烯的快速转化,同时控制涂层的厚度和粗糙度。与原始的钻石涂层相比,获得的表面显示出摩擦系数降低63%–72%,所有摩擦系数均低于0.1,至少为0.06,特定磨损率降低了59%–67%。此外,摩擦对应物中的粘合剂磨损受到显着抑制,从而使磨损降低了49%–83%。这表明机械化学磨损特性的润滑和抑制作用显着改善。本研究提供了一种有效且成本效益的途径,以克服工程钻石表面的应用瓶颈,有可能显着提高性能并扩大钻石涂层组件的应用范围。
本书的主题包括大量信息,适合那些需要更多了解薄膜以用于研究目的或希望使用这种特殊形式的固体材料实现各种应用目标的物理学家、化学家和工程师。这本出版物非常特别,因为作者提供了他在 20 多年深入研究薄膜方面获得的丰富理论和实践经验。他关注所有对最终产品有影响的细节,因此可以非常彻底地描述所有玻璃类型基材的特性,还可以处理有关表面物理的非常困难的问题。玻璃可以通过多种方法生产。制造工艺和化学成分决定了特定玻璃对其环境的抵抗力。还有不同的玻璃表面精加工工艺,这与上述两个因素一起决定了表面特性。除了无机玻璃,还考虑了有机玻璃和塑料材料。如今,有两种首选的薄膜生产方法:化学气相沉积和真空物理气相沉积;后者的三大技术是溅射、蒸发和离子镀。这些都进行了详细讨论。作者的丰富经验使他能够在讨论如何使用适当的真空技术产生具有所需残余气体氛围的真空时提供许多宝贵的建议。他还研究了机械和光学薄膜特性以及薄膜厚度测量方法,这些也包含在书中。还提供了允许开发复杂薄膜系统的计算方法的信息。精确的计算和极其准确的测量是计算机控制涂层系统中生产薄膜的基础。薄膜的应用在书中也占有重要地位。作者所在的公司因其薄膜产品而闻名于世。总之,这本书可以说是一本由科学家为科学家和技术人员编写的关于玻璃和薄膜的处方集。它超越了标题所指的主题,填补了迄今为止现有技术文献中存在的空白。
本书的主题包括大量信息,适合那些需要更多了解薄膜以用于研究目的或希望使用这种特殊形式的固体材料实现各种应用目标的物理学家、化学家和工程师。这本出版物之所以如此特别,是因为作者提供了他在 20 多年深入研究薄膜方面获得的丰富理论和实践经验。他关注所有会影响最终产品的细节,因此可以非常彻底地描述所有玻璃类型基材的特性,还可以处理有关表面物理的非常困难的问题。玻璃可以通过多种方法生产。制造工艺和化学成分决定了特定玻璃对其环境的抵抗力。还有不同的玻璃表面精加工工艺,这与上述两个因素一起决定了表面特性。除了无机玻璃外,还考虑了有机玻璃和塑料材料。如今,有两种首选的薄膜生产方法:化学气相沉积和真空物理气相沉积;后者的三大技术是溅射、蒸发和离子镀。这些技术都进行了详细讨论。作者的丰富经验使他能够在讨论如何使用适当的真空技术产生具有所需残余气体氛围的真空时提供许多宝贵的建议。他还研究了机械和光学薄膜特性以及薄膜厚度测量方法,这些也包含在本书中。还提供了有关允许开发复杂薄膜系统的计算方法的信息。精确的计算和极其精确的测量是计算机控制涂层系统中生产薄膜的基础。薄膜的应用也在书中占有重要地位。作者所在的公司以其薄膜产品而闻名于世。总之,这本书可以称为由科学家为科学家和技术人员编写的关于玻璃和薄膜主题的处方集。它超出了标题所指示的主题,填补了迄今为止现有技术文献中存在的空白。
然而,令人印象深刻的高 PCE 是使用氮气中不可升级的旋涂法从小面积电池(< 1 cm 2 )获得的。[1–3] 为了使 PSC 具有商业可行性,开发在环境空气中低成本大面积制造工艺势在必行。工业上可用于大面积涂覆的许多工艺,例如浸涂、刮刀涂覆和狭缝模涂覆等。其中,狭缝模涂覆是优选的,因为它可以精确控制涂层厚度和溶液使用量(即材料浪费最少)。[4–7] 狭缝模涂覆也适合用于连续工艺,这可以进一步降低制造成本。高性能 PSC 已经通过刮刀涂覆、狭缝模涂覆和喷涂等可扩展工艺制造出来。[8–14] 然而,大多数研究集中在受控环境下的钙钛矿层处理。关于在环境空气中操作的可扩展工艺的报道有限。 [15–18] 常用的 pin 型 PSC 结构包含通过溶液工艺沉积的四层,这四层包括空穴传输层 (HTL)、光吸收钙钛矿层、电子传输层 (ETL) 和功函数调节层 (WFL)。首先,为实现可扩展的工艺,每层加工过程中使用的所有溶剂都应无毒。[19–21] 然后,在每层的合适化学组成、溶剂类型、薄膜形貌控制、层间兼容性、每层的稳定性之间的平衡以拥有可行的环境空气处理系统在科学和工程方面都是相当具有挑战性的。PSC 每层的薄膜形貌和兼容性由每层的化学组成和工艺条件控制。对于钙钛矿层,薄膜形貌由溶剂蒸发和结晶的动力学速率决定。[22–23] 对于旋涂,大多数溶剂通过涂布机旋转和反溶剂滴落迅速去除。 [24] 但狭缝涂布的溶剂挥发速度低于旋涂。[17,25–26] 采用反溶剂浴、气体淬火和预热基片法等策略来增加溶剂挥发速度。[11,27–31] 虽然可以实现高PCE器件,但结果仅限于小面积基片。如果