因此,我们旨在通过反复进行目标AID的基本构建以及对反馈的评估和验证,以建立高度的技术。 (1)基本技术的构建:首先创建超级目标AID,为了使基因组编辑更有效,我们将创建一个改进的功能目标AID(超级目标AID)。研究主要考虑质粒方面的变化。我们旨在通过使用没有复制能力的瞬态质粒来控制温度敏感启动子和组成启动子的DCAS9和CRISPR-GRNA,使用快速降解酶(LVATAG)[参考2],以及使用抑制DNA修复机制(UGIS)的系统。接下来,我们还将考虑修改酶本身。我们还考虑使用反遗传方法的改进,例如减少CAS9非特异性结合的突变[参考3],增加辅助酶活性的突变[参考4]以及对融合酶的接头长度的修改。 (2)评估基础替代效率:基因组编辑中靶点效应的验证,关键点是如何抑制与目标序列不同的位点的意外诱变,以及如何验证这一点。意外突变包括通过类似于目标序列的靶向序列引入的突变,以及完全独立于序列的非特异性突变。为了验证脱靶,使用破坏RPOB基因的利福平抗药性菌株进行评估。在改进目标基因,培养条件和目标AID的编辑方法的同时,进行了非目标评估,并最终进行了大肠杆菌的整个基因组序列以验证测试。
车辆(EV)和便携式电子设备。这种新颖的方法可主动将热量从电池组中转移0,从而通过peltier模块产生热电效应。这确保理想的操作条件并延长电池的寿命。在电池系统面临的无数挑战中,一个关键方面是温度的有效管理,这一因素会深刻影响性能,寿命和安全性。但是,这些电池组的最佳性能取决于保持精确的温度设置。高温会损害性能,加速折旧,甚至是危险的,这强调了热管理的重要性。冷却系统的演变即使它们被广泛使用,传统的被动冷却技术通常无法动态地适应电池遇到的不断变化的需求和环境环境。主动冷却系统是寻找更智能和响应式解决方案的结果。它们是为了积极控制温度并减轻热量积聚的负面后果。Peltier模块,也称为热电冷却器,是借出毛发效应以创建传热机制的半导体设备。当热量通过电流通过时,将热量吸收在模块的一侧并在另一侧释放时,会产生温度差。Peltier模块非常适合涉及热管理的应用,因为它们使用此概念积极冷却或加热表面。整合有很多好处主动的电池组冷却系统将毛皮管模块集成到其设计中,以积极控制电池组的温度。这很重要,因为电池电池性能和寿命会受到温度的直接影响。高温有可能加快细胞内化学过程,这可能导致容量降低,更快的恶化和安全问题。
• 所有食物必须存放在离地面至少 6 英寸的地方。 • 将重物存放在较低的架子上。 • 根据收货日期和包装日期轮换食物。 B. 疾病因素 TM 4-41.11,第 5 章,5-1 导致食源性疾病爆发的八个最常被提及的因素是: 1. 未能适当冷却食物。 2. 未能彻底加热或烹制食物。 3. 允许受感染的食品服务人员在设施内工作。 4. 提前太久准备食物。 5. 在食物中使用未经进一步烹制的生料或受污染的配料。 6. 让食物保持在细菌培养温度。 7. 未能将煮熟的食物重新加热到杀死细菌的温度。 8. 工人不当处理食物或清洁设备,导致熟食与生食交叉污染。 C. 危害 TM 4-41.11,第 5 章,5-2 食源性疾病威胁。食源性疾病威胁主要有三种类型:化学危害、物理危害和生物危害。注意:请参阅 TM 4-41.11,第 5 章,第 5-5 段,查看温度危险区。D. 食品制备 TM 4-41.11,第 5 章,5-3 食品服务人员在准备食品时需要了解他们正在处理的食物类型和潜在危险,以确保不会发生交叉污染。准备人员应特别注意洗手和对食品接触表面进行消毒。如果在准备、保存和提供食物时不控制温度,可能会导致食源性疾病。需要注意的方面包括:
摘要 — 在生产高性能计算 (HPC) 数据中心,许多因素(包括工作负载计算强度、冷却基础设施故障和使用节能冷却)都会大幅提高 CPU 温度。与 CPU 热设计相关的研究表明,工作温度的细微变化会严重影响 CPU 的寿命、耐用性和性能。因此,监控和控制 CPU 的工作温度至关重要。在本研究中,我们设计了一种自动且连续的 CPU 热监控和控制方法来维持和控制健康的 CPU 热状态。本研究利用 Redfish 协议监控 CPU 温度,并使用动态电压频率调整来控制温度。我们开发了一个参考实现,并使用 150 个 Raspberry Pi3 节点集群评估了我们的方法。我们在不同场景中执行了广泛的 CPU 热分析。我们分析了 CPU 在室温下 100% 负载下达到最高温度的速度。根据我们的实验,在最低和最高 CPU 频率配置下,100% 负载的 CPU 的温度分别可升至 ∼ 72°C (161.6°F) 和 ∼ 86°C (186.8°F)。我们分析了在八种温度配置下应用热控制对 CPU 的热和频率缩放行为的影响。我们观察到,在较低温度配置(例如 70°C (158°F))下应用热控制是修复过热 CPU 的更好配置。根据所提出的模型,在正常温度下运行的 CPU 将消耗相对较少的能量,提供更高的性能并增强其耐用性。索引术语 —CPU 温度、自动化、HPC、数据中心、Kraken、动态电压和频率缩放、省电、性能、动态热控制、Redfish、DVFS、Kraken、计算集群动态热控制、动态电压和频率缩放、数据中心自动化、高性能计算
乳腺癌是美国女性的第二大死亡原因,2022 年报告的死亡人数为 43,250 人。化疗、放疗和手术等传统治疗方法具有严重的副作用,会影响患者的身心健康。电磁场 (EMF) 提供了一种潜在的非侵入性治疗选择,可以有效治疗乳腺癌,同时减少对患者的负面影响。然而,确保对健康细胞的伤害最小或没有伤害是至关重要的,以避免严重的长期副作用。该研究项目旨在设计一种 EMF 设备,对乳腺癌细胞产生负面影响,同时保证健康细胞的安全。因此,设计了一个亥姆霍兹线圈(如图 1 所示),空气冷却穿过线圈,以防止温度升高并确保稳定的电流流动,减轻热诱导效应。空气冷却还可以精确控制温度,将条件保持在体温、低于和高于体温。过去的实验表明,T47D 细胞的细胞寿命明显下降。然而,在体温(37˚C)下使用三种不同强度(0.14A、0.7A 和 1.45A)进行实验后,通过成像和细胞计数分析未观察到 T47D 细胞活力下降。这表明过去的实验是在不同于体温的温度下进行的,这可能是 T47D 细胞死亡的潜在原因。尽管如此,这并不能排除这样一个事实,即可以实现稳定的温度,既能消灭 T47D 细胞,又能保证健康细胞的安全。未来的实验将在微流体装置中进行,为细胞提供更可控的热环境,旨在消灭 T47D 细胞同时保留健康细胞。此外,预期结果包括测量现场细胞的代谢率,以更好地了解发挥作用的机制。
与传统化学方法相比,连续流技术的优点是可以高度控制温度、压力、停留时间等工艺参数,易于放大和自动化,适用于多步合成。1 – 3因此,它是控制化学反应的理想技术。连续流化学提供了一个自动化友好、灵活、创新和节省空间的反应平台,并且最近才刚刚成熟。近年来,流动化学已涉及越来越多的实验。由于一次性访问量大,流动化学特别适用于重氮化、氧化、硝化等危险反应。作为一种安全、易于控制和绿色的平台,流动化学符合可持续发展的理念,正受到越来越多的关注。合成反应的优化对于化学研究和发现都至关重要。然而,优化,特别是在天然化学生产中的优化,往往涉及多个变量和目标,使问题变得更加复杂。为降低优化过程的复杂性,化学自动化是首选,且在小规模连续流实验中很容易实现。过程分析技术 (PAT) 是一种通过测量影响关键质量属性 (CQA) 的关键过程参数来设计、分析和控制制造过程的系统。4 将在线或在线分析技术与流动化学相结合,可实现实时检查和过程控制,从而帮助实现生产过程自动化。例如,在线核磁共振 (NMR) 和在线红外 (IR) 可帮助系统快速准确地收集生产所需的信息。收集到的信息被传递到计算机进行处理,从而指导本次或下次实验。通过 PAT 工具快速、集成地采集数据,可以使用自动优化算法处理数据丰富的实验。然而,这对 PAT 工具的设备、数据采集和处理能力提出了很高的要求。随着人工智能 (AI) 的发展,大多数问题都在不断得到改善,从而提高了当前生产的效率、敏捷性、质量和灵活性。PAT 工具是流化学中 AI 自我优化的前提和基础。本综述总结了最近 AI 在连续流化学生产的化学产品过程分析和优化中的应用。
使用十二烷基硫酸钠(SDS)和高纯度分析级硝酸盐,通过化学共沉淀法在控制温度下合成磁钴铁素纳米颗粒(NP)。合成的材料的特征是研究的X射线衍射(XRD),扫描电子显微镜(SEM)和傅立叶变换红外辐射(FTIR)技术。样品在850 0 c烧结5H。X射线衍射分析证实了用公式AB 2 O 4的单相立方尖晶石结构的形成。在四面体(A位点)和八面体(a-o,b-o)上的晶格常数,X射线密度,结晶石大小,位置半径(R a,r b),键长(A-O,B-O)上的四面体(A位点)和八面体(b site)在样品中计算出来。晶格常数和结晶石尺寸分别为8.361 A 0和27 nm。FTIR光谱在四面体和八面体部位分别在400 cm -1和800 cm -1的范围内显示了两个强吸收带。SEM研究表明,平均晶粒尺寸为0.25 µm,几乎是球形形状的微结构钴铁氧体纳米粒子。关键字:化学合成,纳米颗粒,结晶石大小,XRD,FT-IR,SEM。1。简介:铁磁性材料含有一种称为铁氧体的氧化铁。铁素体具有一个立方尖晶石相,具有通用式AB 2 O 4,其中A是二价金属离子,例如Ni,Zn,Mn,Mn,Cu,Ca,Ca,Co,Mg,Mg和B是Fe,Sm,sm,sm,gd,la,ce,等等的三价金属离子。该结构中氧离子的排列提供了四面体(a)和八面体(b)位点。许多阳离子优先占据了其中一个位置。居住在8个四面体和16个八面体位置的阳离子在铁氧体的独特特征中具有重要作用。由于现代社会不断增长的需求,铁矿的微波特性现在需求很高。钴铁矿是微波工业中最常使用的材料,因为它们的高化学稳定性,机械品质,低成本和易于制造。他们的一般化学公式(AB 2 O 4)具有逆尖晶石结构,其一半占据了四面体A位点的铁离子,其余的以及钴离子,分布在八面体B点上。钴
摘要:热电发电机(TEG)和热电冷却器(TEC)电池冷却系统是一种剪切技术,旨在优化各种应用中电池的性能和寿命,例如电动汽车和可再生能源存储系统。该系统利用热电效应,其中要利用温度差来产生或散热。在电池冷却的背景下,TEGS有效去除充电和放电过程中产生的多余热量,从而防止过热和热降解。相反,TEC可以根据需要加热或冷却电池。这种创新的方法不仅提高了电池效率,还可以延长其运营寿命,从而使其在储能和电动迁移率领域成为至关重要的发展。I.随着世界变成“绿色”的变化,信息可再生能源的应用程序(例如消费电子,车辆甚至建筑物)正在出现。例如,放电率将确定电动和混合电动汽车的加速过程。电池的寿命也很大程度上取决于工作温度。在正常工作条件下,例如-30°C至60℃,电池健康与最佳电池温度范围有很大差异。有效的温度管理系统对电池健康产生了重大贡献,并延长了整体寿命。此外,随着容量和充电率的增加,电池安全问题需要更多关注。然而,研究表明,在50℃以上工作可能对电池的寿命有害''进一步的研究表明,从25℃至40℃的温度范围(与此温度范围最大5℃差5℃)为电池提供了最佳的工作环境,例如铅 - 酸,NIMH和Li-ion''''。随后,已经开发了各种BTMS,以满足对更高功率,更快的充电率和提高Drivin性能的需求。现代BTMS'分为两组:主动系统和被动系统。被动BTM通常采用相变材料,热管和水凝胶。零额外的功耗是这些系统最突出的功能。但是,冷却过程很难管理。主要问题是在某些情况下的冷却效果可能非常有限。已开发了多年的车辆热电发电设备。相比之下,电池热管理使用的热电冷却器(TEC)是电动汽车相对较新的候选者。这些受益于强大的冷却能力和可靠的工作潜力,并越来越关注整合到BTMS中。热电冷却器(TEC)基于电压转换为温度差。这种毛皮 - 隔离效果以及汤普森效应属于热电效应。热电效应是指从热到电的所有转化过程,反之亦然。热电冷却器的主要优点是相对安静,稳定且可靠的。此外,可以通过改变电压供应而轻松控制温度。1.1目标:1为电动汽车开发基于TEG和TEC的空调原型。2优化系统的冷却效率,同时最大程度地减少功耗。 3实施可靠的温度控制机制,以实现机舱舒适度。 4确保安全功能以防止过热和电气问题。 5通过测试和数据分析评估系统的性能。 6评估将毛皮尔系统整合到商业电动汽车中以进行实际使用的可行性。 1.2预期结果:TEG(热电发生器)和TEC(热电冷却器)电池冷却系统有望提供2优化系统的冷却效率,同时最大程度地减少功耗。3实施可靠的温度控制机制,以实现机舱舒适度。4确保安全功能以防止过热和电气问题。5通过测试和数据分析评估系统的性能。6评估将毛皮尔系统整合到商业电动汽车中以进行实际使用的可行性。1.2预期结果:TEG(热电发生器)和TEC(热电冷却器)电池冷却系统有望提供
工业系统自动化、视觉与控制 (AVCSI) 实验室 阿尔及利亚奥兰科技大学自动化工程系。 ORCID:https://orcid.org/0000-0002-3781-9779 doi:10.15199/48.2023.03.43 使用 3D-TLM 方法和 COMSOL Multiphysics 软件对基于 MEMS 的气体传感器进行微加热器热分析 摘要。带有金属氧化物 (MOx) 的气体传感器为 MEMS 传感器提供了新的机会,因为它们拥塞少、灵敏度高、响应速度快。微热板是这些传感器中控制传感层温度的关键组件。在这项工作中,已经制造并设计了一种蜿蜒的铂基加热器。传输线矩阵 3D-TLM 方法和 COMSOL 软件用于预测均匀的温度分布。因此,在设计任何气体传感器和 MEMS 之前,微加热器热区的温度控制非常重要。压力。使用金属 (MOx) 技术可以将 MEMS 技术与其他技术结合起来。 Płyta grzejna jest kluczowym elementem tych czujników do kontrolowaniaTemperature Warstwy czujnikowej。 W tej pracy wykonano i zaprojektowano Meandrowy grzejnik na bazie platyny。 Metoda 3D-TLM 是一种通过 COMSOL 程序传输的 Macierz 语言,可用于测量温度。控制温度和微机电温度是 MEMS 项目中的一个重要问题。 ( 分析方法 3D-TLM i oprogramowaniem COMSOL Multiphysics dla czujnika gazu MEMS ) 关键词:基于 MEMS 的气体传感器、微型加热器、3D-TLM、COMSOL Multiphysics、均匀温度分布。主题:基于 MEMS 的气体传感器、微控制器、3D-TLM、COMSOL Multiphysics、温度传感器。简介基于 MEMS 的气体传感器(微机电系统)具有相当有趣的特点,例如高灵敏度、低成本和越来越小的尺寸。MOX 传感器是家庭、商业应用和工业安全设备中最主要的固态气体检测设备。然而,这种传感器的性能受到其加热板的显著影响,加热板控制传感层的温度,传感层应在加热器区域所需的温度范围内,以便检测不同的气体。这些传感器是由 Taguchi [1] 首次开发的。它们的工作原理基于金属氧化物层的电导率随周围气体性质的变化而变化。然后,这些传感器的结构可以小型化,因为它们的制造与微电子工艺兼容。这样可以降低成本,并可以将这些传感器和相关电子电路集成到单个组件中。许多研究都集中在微传感器的设计和建模上,例如 M. Dumitrescu 等人 [2] 和 S.Semancik 等人 [3] 的研究,他们在兼容的 SiO 2 平台上引入了多晶硅微加热板平台并集成了片上电路。M. Afridi 等人 [4] 设计了一种带有多晶硅微加热器的单片 MEMS 气体传感器。之后,J. Cerda Belmonte 等人 [5] 描述了检测 O 2 和 CO 气体的制造工艺。2007 年,Ching-Liang Dai 等人 [6] 设计了一种基于 WO3 纳米线的片上湿度传感器,JF Creemer 等人 [7] 提出了一种 TiN 微加热板。而 G.Velmathi 等人 [8] 提出了一种基于 TiN 微加热板的传感器。 [8] 提出了各种微加热器几何形状,M. Gayake、Jianhai Sun [9, 10] 通过有限元法模拟比较了这些基于聚酰亚胺的微加热器几何形状。2017 年,T. Moseley [11] 介绍了半导体金属氧化物气体传感器技术的发展进展,刘奇等人 [12] 综述了基于单层 SiO2 悬浮膜的新型形状微加热板的热性能可能性。R. Jagdeep 等人 [13] 提到
植物工厂可以定义为园艺温室或自动化系统设施,通过控制环境条件,例如光,温度,湿度,CO 2和养分溶液。最近,在工厂工厂中,先进的技术已被用来自动调整和控制增长环境。现代工厂工厂技术的主要好处是安全,保障和稳定的食品供应。他们可以解决减少农业员工减少的问题,由于全球变暖的异常天气以及由于人口过多而导致的粮食短缺。因此,可以预期农业业务的进步。植物工厂可以将基于人造照明的完全封闭的系统和基于天然阳光的系统广泛归类。封闭的植物工厂中使用的主要培养方法是水培法,而天然阳光系统可以同时使用土壤和水培技术。基于阳光的植物工厂可以独自使用自然阳光,或者可以使用自然的阳光和人造光的组合。在一个封闭式工厂工厂中,运营成本很高。这种方法不适合种植大量水果和蔬菜,但叶蔬菜适用。小空间,建筑物内部或以前的工业工厂,是植物生长系统的足够关联。如果环境控制是最佳的,则可以增加植物的营养价值。这种用于重新搜索的温室称为phytotron。另一方面,与封闭系统相比,基于阳光的植物工厂的运行成本较低。它们更适合种植更大的水果和蔬菜,但是由于气候变化不可预测,环境控制很困难。植物工厂的历史和典型的过渡如下:1949年,帕萨迪纳加利福尼亚理工学院的Earhart植物研究实验室开发了第一个温室,控制着照明,温度,湿度,湿度,CO 2,风,雨,雨水和雾气。在1950年代在日本,植物体安装在大学,生物学和农业研究机构中。1952年,国家遗传学研究所的环境监管温室成为该国的第一个植物。在1957年,东京大学的农业教师安装了能够控制温度,湿度和人工照明的生物环境控制设施(Biotron)。它不仅是植物植物,而且是生物学研究目的的动物和昆虫环境控制实验室。在1950年代和60年代,BIOS-3 CELSS(受控生态生命支持系统)始于其他国家的太空发展计划。1967年,威斯康星大学还建立了一个名为Biotron的设施。在1970年代初期,日本有限公司(目前是该协会的名誉会员(日本农业,生物学和环境工程师和科学家学会),Takatsuji Masaki)是世界上第一个开始使用工厂工厂技术进行测试的人。在1980年代在美国,使用自然阳光的大型自动化植物工厂变得广泛。同时,在荷兰,使用人造光作为种植花,观赏植物和幼苗的植物生产工厂也变得突出。在日本,水疗中心(语言植物方法)生物特征培养技术是由Ehime University教授Hashimoto Yasushi提出的。1990年,提出了国际空间站内的一家工厂工厂,对零重力与植物生长之间关系的研究始于NASA开发的沙拉机。在日本,目的是提高生产效率。由于这种重点,已经开发了基于荧光照明的多层培养系统,有效地利用面积较密集的植物布局以及漂浮在洪水床上的栽培面板。机器人还被引入植物工厂,在该工厂中,开始并继续进行播种,收获和包装的测试。2008年,启动了一项日本国家政策,称为“广泛工厂工厂使用的经济增长战略”,以促进完全控制的环境和太阳能植物工厂企业的传播。 在2009年第三次繁荣时期,三菱研究所公司2012年3月的调查显示,建立了各种工厂工厂,并且已经开始运营。 106个工厂仅使用人造光,21使用人工和自然光的组合,而84个独有的自然阳光。2008年,启动了一项日本国家政策,称为“广泛工厂工厂使用的经济增长战略”,以促进完全控制的环境和太阳能植物工厂企业的传播。在2009年第三次繁荣时期,三菱研究所公司2012年3月的调查显示,建立了各种工厂工厂,并且已经开始运营。106个工厂仅使用人造光,21使用人工和自然光的组合,而84个独有的自然阳光。从那时起,从耕种到收获的自动化技术管理元素的快速发展就一直在环境控制开始。到目前为止,据推测,只有机器才在植物工厂内部移动。但是,最近还分析了植物移动系统的土壤培养物。例如,大阪县大学的多阶段生菜培养系统机器人或国家农业和食品研究组织的草莓收获机器人。