作者还从西方文献中很少讨论的角度来研究问题。同时,通过大量使用公开的俄罗斯和西方文件,作者还试图减少围绕该主题的神秘气氛,这种神秘气氛往往是西方辩论的特征,而且很可能是毫无根据的。为了了解反身控制背后的原因,作者讨论了控制论和系统理论之间的接口。本研究重点关注反身系统,这是这些概念的一种表现形式,其中系统试图根据对手使用的类似系统调整其操作。换句话说,它试图在自己的活动中反映对方的系统。本研究回顾了苏联时期该概念的发展,并总结了苏联解体后俄罗斯该领域的发展。在回顾了反身控制的历史之后,作者结合俄罗斯关于战争性质及其对军事决策影响的辩论,讨论了其概念和应用。本研究利用这些原则提出了一个反身控制的综合模型。在研究结束时,作者将本研究的结果置于更广泛的背景中。这些结论证实了以下假设:俄罗斯正在所有作战层面分析对手的指挥和控制系统。因此,这些活动不太可能纯粹基于机会主义。相反,正如这项研究表明的那样,俄罗斯试图掩盖更高层次的战略是一个更有可能的解释。作者在结论中还指出,俄罗斯信息作战方法中的假设(源于客观世界观)是,当特定信息通过特定信息渠道输入时,可以预期响应。这与西方思维不同。这种差异也可能解释了西方研究人员在研究俄罗斯信息作战时面临的一些挑战。关键词:指挥与控制、控制论、决策、信息战、反身控制、反身性、俄罗斯、苏联、系统、系统理论
本研究的目的是确定反身控制的含义、如何应用反身控制以及应用反身控制的方法。本研究将反身控制与更广泛的系统理论概念相结合,作者还从西方原始资料中很少讨论的角度研究了问题。同时,作者还通过大量使用公开的俄罗斯和西方文件,试图减少围绕该主题的神秘气氛,这种神秘气氛往往是西方辩论的特征,而且很可能是毫无根据的。为了了解反身控制背后的原因,作者讨论了控制论与系统理论之间的接口。本研究重点关注反身系统,这是这些概念的一种表现形式,其中系统试图根据对手使用的类似系统调整其运行。换句话说,它试图在自己的活动中反映对方的系统。本研究回顾了苏联时期这一概念的发展,并总结了苏联解体后俄罗斯该领域的发展。作者回顾了反身控制的历史,并结合俄罗斯关于战争性质及其对军事决策影响的辩论,讨论了其概念和应用。本研究利用这些原则提出了一个反身控制的综合模型。在研究结束时,作者将本研究的结果置于更广泛的背景下。结论证实了俄罗斯正在分析对手所有作战层面的指挥和控制系统的假设。因此,这些活动完全基于机会主义的可能性极小。相反,正如本研究表明的那样,俄罗斯试图隐瞒更高层次的战略是一个更可能的解释。在结论中,作者还指出,俄罗斯信息作战方法中的假设(源于客观世界观)是,当特定信息通过特定信息渠道输入时,可以预期反应。这与西方的想法不同。这种差异也可能解释了西方研究人员在研究俄罗斯信息作战时面临的一些挑战。关键词:指挥与控制、控制论、决策、信息战、反身控制、反身性、俄罗斯、苏联、系统、系统理论
经典控制系统建模的局限性、多输入多输出系统。动态系统的状态空间建模、状态变量定义 - 状态方程。输出变量 - 输出方程。用向量矩阵一阶微分方程表示。矩阵传递函数、状态转换矩阵 - 矩阵指数、属性、状态方程的数值解、示例。状态方程的正则变换,特征值,实数不同,重复。可控性和可观测性-定义-意义。数字控制系统:概述-优点,缺点。
本文对手动控制理论中的四种模型进行了实证比较,以了解它们对人类用户使用鼠标进行瞄准行为建模的能力:McRuer 的 Crossover、Costello 的 Surge、二阶滞后 (2OL) 和 Bang-bang 模型。此类动态模型具有生成性,不仅可以估计移动时间,还可以估计指针的位置、速度和加速度。我们描述了一个实验框架,用于获取指向动作并自动将数学模型的参数与实证数据相匹配。我们介绍了实验数据的时间序列、相空间和胡克图可视化的使用,以深入了解人类指向动态。我们发现,所识别的控制模型可以生成一系列动态行为,这些行为在不同程度上捕捉人类指向行为的各个方面。难度指数 (ID) 较低的条件表现出较差的适应性,因为它们不受约束的性质自然会导致更多的行为变化。我们报告了人类在指向过程中的波动行为(初始的弹道子运动)的特征,以及许多控制器性能指标的差异,包括过冲、稳定时间、峰值时间和上升时间。我们描述了模型之间的权衡。我们得出结论,控制理论为基于菲茨定律的人机交互方法提供了有希望的补充,模型提供了人类指向动力学的表示和预测,可以提高我们对
控制车辆是许多人日常生活的一部分。了解人类如何控制车辆对于车辆及其与人类控制器的接口的设计尤为重要。它使工程师能够设计更快、更安全、更舒适、更节能、更通用、更好的车辆。尤其是现在,当自动化使我们能够以各种可以想象的方式支持人类控制器时,了解人类如何控制和与车辆交互非常重要。人类和自动化将动态共享对车辆的控制权。因此,自动化应该(至少!)围绕人类进行设计,但如果自动化的行为方式与人类的控制行为相似,那就更好了。如果自动化表现得像人类控制器,人类控制器就能更好地理解自动化的意图,从而提高安全性、增加舒适度并更容易被接受。人类控制器 (HC) 几乎总是控制着车辆以实现高级目标。为了实现这一高级目标,HC 需要连续执行大量较小的任务,这些任务通过向车辆提供“控制输入”来实现:转动方向盘、踩下油门、拉动直升机上的总杆、转动旋钮等。要理解高级目标和低级控制输入之间的关系,有助于
我期望在这里发布更新、附加材料和参考资料、链接和勘误表。如果涵盖所有材料并在讲座中提供完整的证明,文本的当前内容远远超过一年内可以完成的内容。但是,有几种方法可以根据本书的部分内容构建一年的课程或两门这样的课程。例如,可以只涵盖线性理论,跳过可选部分以及关于非线性可控性和乘数(变分)方法的章节。一门独立的、相当独立的课程可以涵盖更高级的非线性材料。最终,主题应该反映学生和教师的背景和兴趣,我很乐意与潜在的教师讨论教学大纲。我要感谢所有向我发送建议和评论的同事、学生和读者,特别是 Brian Ingalls、Gerardo Lafferriere、Michael Malisoffi 和 Konrad Reif。特别感谢 Jose Luis Mancilla Aguilar 和 Sarah Koskie,他们指出了大量错别字和错误,并提出了适当的更正。当然,肯定还有很多错误,而这些错误都是我独自承担的。我还要重申我对空军科学研究办公室的持续支持以及我的家人无限耐心的感谢。
我希望在这里发布更新、附加材料和参考文献、链接和勘误表。如果涵盖所有材料并在讲座中提供完整的证明,那么目前教材的内容远远超过一年内可以完成的内容。但是,有几种方法可以根据本书的部分内容来组织一门或两门为期一年的课程。例如,可以只涵盖线性理论,跳过可选部分以及关于非线性可控性和乘数(变分)方法的章节。一门独立的课程可以涵盖更高级的非线性材料。最终,主题应该反映学生和教师的背景和兴趣,我很乐意与潜在的教师讨论教学大纲。我要感谢所有向我发送建议和评论的同事、学生和读者,特别是 Brian Ingalls、Gerardo Lafferriere、Michael Malisoffi 和 Konrad Reif。特别要感谢 Jose Luis Mancilla Aguilar 和 Sarah Koskie,他们指出了大量错别字和错误,并提出了适当的更正。当然,肯定还有很多错误,而这些错误都是我独自承担的。我也再次感谢空军科学研究办公室的持续支持,以及我的家人的无限耐心。