• 任意单量子比特旋转门和相位门,加上某些双量子比特门(如CZ或CNOT)门,组成通用门集。• 单量子比特门需要精确控制原子与电磁波的相互作用;双量子比特门需要精确控制原子与原子之间的相互作用
量子电路合成描述了将任意酉操作转换为固定通用门集的门序列的过程,该门集通常由给定硬件平台的原生操作定义。大多数当前合成算法旨在合成一组单量子比特旋转和一个额外的纠缠双量子比特门,例如 CX、CZ 或 Mølmer-Sørensen 门。然而,随着中性原子硬件的出现及其对两个以上量子比特门的原生支持,针对这些新门集量身定制的合成方法变得必要。在这项工作中,我们提出了一种使用 ZX 演算合成(多)控制相位门的方法。通过将量子电路表示为图形状的 ZX 图,可以利用对角门的独特图形结构来识别某些量子电路中固有存在的多控制相位门,即使原始电路中没有明确定义。我们在各种基准电路上评估了该方法,并将它们与标准 Qiskit 综合进行比较,比较了其在具有多控制门原生支持的中性原子硬件上的电路执行时间。我们的结果显示了当前最先进硬件的可能优势,并代表了第一个支持任意大小多控制相位门的精确综合算法。
在本研究中,我们提出了一种双向量子通信方案,其中两个合法参与者使用四量子比特簇状态作为量子信道相互交换量子信息。最近,Kazemikhah 等人 [ Int. J. Theor. Phys., 60 (2021) 378] 利用四量子比特簇状态作为量子信道,尝试设计一种两个合法参与者之间相互交换量子信息的方案。然而,在本研究中,已经证明在他们的方案中无法实现量子信息的传输,因为由于 Kazemikhah 等人在描述量子信道时犯了一个微不足道的概念错误,两个参与者彼此并不纠缠。在这里,我们已经证明,两个合法参与者可以使用四量子比特簇状态作为量子信道相互传送量子信息态,只要他们相互合作并执行非局部控制相位门操作。如果双方不相互合作,那么就没有人能够重建发送给他们的信息,因此只有双方彼此诚实时才有可能进行信息交换。
变分算法(例如量子近似优化算法)因其有可能使用近期的量子计算机解决问题而备受关注。在这种算法中,ZZ 相互作用通常会生成原始的两量子比特门,该门的作用时间通常是变分参数 γ 。在两量子比特门的实现方面,存在不同的编译技术。由于 ZZ 门的重要性,我们提出了一个误差分析,比较连续角度控制相位门( CP )与固定角度控制 Z 门( CZ )。我们在相干过度旋转和去极化噪声的影响下分析了这两种技术。我们表明,如果非相干误差低于 0.03 % 且相干误差低于 0.8 %,则 CP 和 CZ 编译技术可实现相当的 ZZ 门保真度。因此,我们认为,对于较小的相干和非相干误差,非参数化的双量子比特门(如 CZ)与单量子比特门的虚拟 Z 分解相结合,可以显著减少所需的校准,从而减少量子设备的错误率。我们表明,当相干误差超过 0.04 π(2%)时,CZ 门保真度显著依赖于 γ。
硅光子学正迅速扩展到传感和微波光子学等新应用领域 [1]。此类应用需要可调谐滤波器,而可使用波导环形谐振器 (RR) 高效构建。此类无限脉冲响应 (IIR) 滤波器也可采用可配置的循环波导网格灵活实现,但由于光学长度较长且采用多个分立元件,因此品质因数 (Q) 和自由光谱范围 (FSR) 较低。此外,由于采用了热光驱动,当前代工平台中可用的有源元件功耗在 mW 级。基于 MEMS 的元件对于可编程电路而言颇具吸引力,因为它们可以在短光学长度内高效调整相位或功率,功耗低于 µW [2]。MEMS 执行器已用于可调 RR [3-5],但尚未出现可控制相位和两个耦合器的紧凑型分插环。 Chu 和 Hane 展示了一种光学长度极短、谐振调谐范围大的 RR,但 Q 值限制为 1.6 × 103 [ 3 ]。Park 等人报道了完全可重构环,但 FSR 低于 0.2 nm [ 5 ]。这里,我们展示了一个分插环谐振器,其 FSR 为 4 nm,并且对相位(失谐)和两个定向耦合器均进行了模拟控制。该设备是在 IMEC 的 iSiPP50G 代工平台上实现的,经过了一些后处理步骤。