1 1,麦吉尔大学,麦吉尔大学,麦克吉尔大学,蒙特利尔,QC加拿大QC H3A 2B4 *通讯作者:thomas.durcan@mcgill.ca摘要肌营养性侧面硬化症(ALS)代表着一种复杂的神经变性疾病,具有重要的属性症状。 迄今为止,遗传病因和驱动该疾病的潜在分子机制均尚未了解,尽管近年来,许多研究突出了许多ALS的遗传突变。 这些突变指出了可能在ALS中可能影响的潜在途径,具有产生人类神经元的能力和包含这些突变的其他疾病相关细胞的能力,如果出现新疗法,则变得更加关键。 随着诱导多能干细胞(IPSC)的出现,并定期间隔短的短文重复序列(CRISPR)基因编辑场为我们提供了在IPSC基因组中引入或纠正特定位点的特定突变的工具,从而模拟了风险突变的特定贡献。 在这项研究中,我们描述了一种将突变引入控制线或纠正突变的快速有效方法,从具有给定突变的患者衍生的IPSC产生了ISEGENIC控制线。 引入的突变是将G93A突变分成SOD1或H517Q中的FUS,而校正的突变是SOD1中I114T的患者IPSC线。 通过IPSCS和CRISPR编辑的组合,此处生成的细胞将提供对ALS中神经元变性的分子机制的基本见解。1,麦吉尔大学,麦吉尔大学,麦克吉尔大学,蒙特利尔,QC加拿大QC H3A 2B4 *通讯作者:thomas.durcan@mcgill.ca摘要肌营养性侧面硬化症(ALS)代表着一种复杂的神经变性疾病,具有重要的属性症状。迄今为止,遗传病因和驱动该疾病的潜在分子机制均尚未了解,尽管近年来,许多研究突出了许多ALS的遗传突变。这些突变指出了可能在ALS中可能影响的潜在途径,具有产生人类神经元的能力和包含这些突变的其他疾病相关细胞的能力,如果出现新疗法,则变得更加关键。随着诱导多能干细胞(IPSC)的出现,并定期间隔短的短文重复序列(CRISPR)基因编辑场为我们提供了在IPSC基因组中引入或纠正特定位点的特定突变的工具,从而模拟了风险突变的特定贡献。在这项研究中,我们描述了一种将突变引入控制线或纠正突变的快速有效方法,从具有给定突变的患者衍生的IPSC产生了ISEGENIC控制线。引入的突变是将G93A突变分成SOD1或H517Q中的FUS,而校正的突变是SOD1中I114T的患者IPSC线。通过IPSCS和CRISPR编辑的组合,此处生成的细胞将提供对ALS中神经元变性的分子机制的基本见解。小分子和生长因子的组合被用来指导编辑的细胞逐步分化为运动神经元,以证明可以为下游应用生成相关的疾病细胞。关键字:CRISPR,ISEGONIC IPSC,ALS,SOD1 -I114T,SOD1 -G93A,FUS -H517Q
•MONO MAC-6细胞系,糖皮质激素诱导的拉链链拉链基因,Mono-Mac6- Sigilz或相应的对照细胞系(Mono-Mac6- sicntl)•单核Mac-6细胞系,一种人类单细胞细胞系,具有永久性基因构成gilz基因的构成蛋白质,gillz gene structiv ottrent gillz gene struptiv centrent(MONO-MAC6- sICNTL)•gilz基因构成gillz Gene structiv ailent ottrent ottrent ottrent gilz gene struptiv。控制线是具有正常吉尔兹基因表达的SICNTL。
2 故障排除和测试 2.1 故障排除 .......................。。。。。。。。。。。。4 2.2 VT420 自检 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10 2.2.1 开始之前 ..................................11 2.2.2 如何输入转义符 ...................11 2.2.3 开机自检 ...............................13 2.2.4 DEC-423 端口环回测试 (6 针) ...................14 2.2.5 RS-232 端口数据线环回测试 (25 针,仅限全球型号) ......................16 2.2.6 RS-232 端口控制线环回测试 (25 针,仅限全球型号) ......................17 2.2.7 打印机端口环回测试(6 针) ......................18 2.2.8 屏幕对齐测试 ..............................18 2.3 打印机问题 ...。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。19 2.4 错误代码。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。20
对几种控制线的稳态形状和风梯度引起的振动的候选方案进行了研究。使用经典振动链开发了计算机模拟,将自由/固定边界条件叠加在线的稳态形状和张力分布上。分析中考虑了几种形式的恢复力和耗散力。证明了叠加方法在很宽的操作范围内的有效性。开发了一种控制律,它调节拖曳机轨道半径,并证明了所有振动减少 50% 或更好的潜力。研究了第二种方案,即在线的尾端使用可控减速伞。可控减速伞在减少振动方面取得了有限的成功,但在调整线的稳态形状方面很有用。
在测试中,样品中的SARS-COV-2抗原与与颜色颗粒共轭的单克隆SARS-COV-2抗体相互作用,形成了彩色抗体抗体复合物。这种复合物是通过在膜上毛细管作用迁移到测试线(t)的,在那里它将被附着在膜上的单克隆抗SARS-COV-2抗体捕获。彩色测试线应出现在结果窗口(t)中。有色测试线的强度将根据样品中存在的SARS-COV-2抗原的量而有所不同。如果样品中不存在SARS-COV-2抗原,则测试线(t)上不会出现颜色。控制线被用作程序控制,应始终出现在控制框中(c)是否正确执行测试程序。
对几种控制线的稳态形状和风梯度引起的振动的候选方案进行了研究。使用经典振动链开发了计算机模拟,将自由/固定边界条件叠加在线的稳态形状和张力分布上。分析中考虑了几种形式的恢复力和耗散力。证明了叠加方法在很宽的操作范围内的有效性。开发了一种控制律,它调节拖曳机轨道半径,并证明了所有振动减少 50% 或更好的潜力。研究了第二种方案,即在线的尾端使用可控减速伞。可控减速伞在减少振动方面取得了有限的成功,但在调整线的稳态形状方面很有用。
频率调制 (FM)。图 3a 中的框图描述了振幅和相位检测以及 FM 模式。在振幅和相位检测模式下,LiftMode 扫描期间没有反馈;即,使悬臂振荡的驱动信号具有恒定频率。通过绘制悬臂的相位或振幅与平面坐标的关系,可以生成 3-D EFM 图像。在 FM 模式下,悬臂振荡的相位是相对于高分辨率振荡器的驱动信号的相位来测量的。相位差用作反馈方案中的误差信号;即,驱动信号的频率被调制(图 3a 中的“频率控制线”),以使悬臂振荡相对于驱动信号保持恒定相位。然后绘制驱动信号频率的调制与平面坐标的关系,从而创建 3-D EFM 图像。
对几种控制线的稳态形状和风梯度引起的振动的候选方案进行了研究。使用经典振动链开发了计算机模拟,将自由/固定边界条件叠加在线的稳态形状和张力分布上。分析中考虑了几种形式的恢复力和耗散力。证明了叠加方法在很宽的操作范围内的有效性。开发了一种控制律,它调节拖曳机轨道半径,并证明了所有振动减少 50% 或更好的潜力。研究了第二种方案,即在线的尾端使用可控减速伞。可控减速伞在减少振动方面取得了有限的成功,但在调整线的稳态形状方面很有用。
对几种控制线的稳态形状和风梯度引起的振动的候选方案进行了研究。使用经典振动链开发了计算机模拟,将自由/固定边界条件叠加在线的稳态形状和张力分布上。分析中考虑了几种形式的恢复力和耗散力。证明了叠加方法在很宽的操作范围内的有效性。开发了一种控制律,它调节拖曳机轨道半径,并证明了所有振动减少 50% 或更好的潜力。研究了第二种方案,即在线的尾端使用可控减速伞。可控减速伞在减少振动方面取得了有限的成功,但在调整线的稳态形状方面很有用。
图1:超导量子处理器的布局和架构。(a)2D超导量子处理器的示意图。橙色十字代表以8×8阵列排列的量子位。灰色圆圈是通过孔(25)进行3D接线。未显示接线的电极以简化。(b)量子阵列单元的电路图。每个量子位(橙色)都有一个用于微波炉和脉冲控制的XY Z控制线(黑色)。将量子夫妇伴侣与单个λ/ 4读出谐振器(黄色),又通常耦合到过滤器(绿色)。通过λ/ 2耦合谐振器(蓝色),两个相邻的量子位分散耦合。(c)Qubits的标签。两个损坏的量子位,即U03Q2和U22Q1,标记为蓝色。