摘要 摘要 人类肢体或器官的丧失仍然是一个挑战,尤其是在人们不断依赖触摸屏和任务的世界中。因此,患者几乎无法承受和应对因这种丧失而遇到的越来越多的限制。现代手段和技术,如先进的人工部件,减少了对残疾或失去肢体或器官的患者的限制。例如,手部假肢为改善人体肢体的功能能力提供了强有力的工具,从而提高了使用者的生活质量。然而,使用假肢的患者仍然遇到许多问题,例如,遭受完整的肢体和背部疼痛、假肢系统成本高以及与假肢性能相关的困难、控制不佳和更新困难。基于上述问题,目标是设计一种由重量轻的重型塑料制成的 3D 仿生手臂。目的是使用伺服电机代替步进电机,以减少延迟和减轻重量。目的还在于设计一个基于人工智能 (AI) 的仿生手臂程序,该程序可以进行修改以用于未来的目的,例如添加新手势和优化系统控制。新设计包括 3D 打印手臂、控制设计、测试电机和 EMG 传感器、选择具有成本效益的部件、模拟和最终确定真实原型。结合直接执行运动机制和仿生假肢的全尺寸模型,该开发旨在用于上肢的医疗康复。实验结果包括开发一个真正的基于 AI 的系统来定制使用神经网络控制的手势。结果还包括保持 EMG 传感器的准确和干净的读数。此外,新的仿生假肢手臂确保性能不会延迟,模仿手的正常功能。结果还表明,我们的设计在成本效益方面超越了现有的设计,前提是在其他几个规格上它是可比的。设计灵活且基于人工智能控制。作为未来的展望,可以在新的基于人工智能的设计中测试更多的算法,并测试更多的手势。
1 Politeknik Kesehatan Padang,Jalan Pondok Kopi,Nanggalo,Padang 2 Politeknik Pertanian Negeri Payakumbuh,Jalan Raya Negara Street,Kototuo,Kota *kota *kota *rinahasniyati4343@gmail.com摘要。2型糖尿病(DM)中高血糖的长期状况将导致葡萄糖自动氧化,这会增加活性氧胁迫。改善肠道菌群的组成与益生菌和益生菌概念的DM患者的宿主细胞之间的平衡是降低持续炎症风险的一种疗法。这项研究旨在检查局部功能性食品的治疗性糖尿病功能性饮料的功效,这是血糖水平和血浆丙二醛(MDA)2型DM患者水平的功效。本研究使用了“前测试前的控制设计”。研究对象是46例2型DM患者,分为两组:干预和对照组。通过目的抽样技术选择了研究样本。干预是通过给出200毫升酸奶的班孔胶带酮酮Hitam进行了两个星期来进行的。mea,统计检验使用了独立的t检验。结果表明,在约贝坦治疗前后,样品在平均血糖水平上没有差异。对照组的血糖水平为4.9±39.3,干预组的血糖水平为-14.1±52.1。然而,样品在Yobetam治疗前后显示出平均MDA水平的差异。对照组的平均MDA水平为0.16±0.39,干预组的MDA水平为0.46±0.37。功能性饮料预计将是口服疗法的替代品。关键词:血糖;丙二醛;糖尿病1。引言全世界2型糖尿病(2型DM)的增加病例被认为是令人震惊的,尤其是在老年人群中[1]。印度尼西亚2型DM患者的患病率估计从2010年的690万人增加到2030年的1200万人[2],[3]。美国糖尿病协会报告说,90-95%的糖尿病病例是2型糖尿病,其特征是胰岛素抵抗导致高血糖[4]。长期长期疾病长期会导致葡萄糖自氧化或非酶蛋白糖基化反应,从而增加活性氧化合物(ROS)[5],[6]。明显发展代谢性疾病的特定环境因素之一是肠道菌群的组成。患有糖尿病和肥胖症患者的特征是肠道屏障的变化,导致肠道菌群与宿主细胞之间的共生关系破坏[7],[8]。通过改善
数字逻辑:逻辑函数、最小化、组合和顺序电路的设计和综合;数字表示和计算机算术(定点和浮点)。计算机组织和架构:机器指令和寻址模式、ALU 和数据路径、CPU 控制设计、内存接口、I/O 接口(中断和 DMA 模式)、指令流水线、缓存和主内存、二级存储。编程和数据结构:C 语言编程;函数、递归、参数传递、范围、绑定;抽象数据类型、数组、堆栈、队列、链接列表、树、二叉搜索树、二叉堆。算法:分析、渐近符号、空间和时间复杂度概念、最坏和平均情况分析;设计:贪婪方法、动态规划、分而治之;树和图遍历、连通分量、生成树、最短路径;散列、排序、搜索。时间和空间的渐近分析(最佳、最坏、平均情况)、上限和下限、复杂性类 P、NP、NP-hard、NP-complete 的基本概念。计算理论:正则语言和有限自动机、上下文无关语言和下推自动机、递归可枚举集和图灵机、不可判定性。编译器设计:词汇分析、解析、语法制导翻译、运行时环境、中间和目标代码生成、代码优化基础。操作系统:进程、线程、进程间通信、并发、同步、死锁、CPU 调度、内存管理和虚拟内存、文件系统、I/O 系统、保护和安全。数据库:ER 模型、关系模型(关系代数、元组演算)、数据库设计(完整性约束、范式)、查询语言(SQL)、文件结构(顺序文件、索引、B 和 B+ 树)、事务和并发控制。信息系统和软件工程:信息收集、需求和可行性分析、数据流图、流程规范、输入/输出设计、流程生命周期、项目规划和管理、设计、编码、测试、实施、维护。计算机网络:ISO/OSI 堆栈、LAN 技术(以太网、令牌环)、流量和错误控制技术、路由算法、拥塞控制、TCP/UDP 和套接字、IP(v4)、应用层协议(icmp、dns、smtp、pop、ftp、http);集线器、交换机、网关和路由器的基本概念。网络安全基本概念:公钥和私钥加密、数字签名、防火墙。Web 技术:HTML、XML、客户端-服务器计算的基本概念。
使用量子特征进行参数估计的量子计量学最近引起了人们的注意,因为它可以胜过任何基于资源的经典测量方案[1-8]。尽管可以实现令人印象深刻的精确提高,但只有在优化协议的各个步骤时才能达到最终性能[4,9,10]。标准过程通常考虑最初以最佳初始状态制备的系统的自由演变。但是,在许多示例中,这种方法还不够,并且必须通过外部控制修改系统动力学,以实现给定实验约束的最高精度。控制设计通常由最佳控制理论(OCT)执行,该理论证明了其在许多量子应用中的有效性[6,11-14]。到目前为止,已经提出了不同的解决方案,以定义最佳控制问题。它们在固定的最后时间示意性地差异以最大化(或最小化)。除其他外,我们可以提到量子渔民信息(QFI)[10,15–30],选择性控制方案[31-39]和指纹识别方法[40-43]的最大化。QFI基于与量子系统结合的cram'er-rao的概括[9,44,45]。对于纯状态,QFI与特定可观察的特定可观察的方差成正比,该方差与哈密顿量的部分衍生物相对于参数进行估计。通过最大化此数量,我们确保参数的小扰动会引起对系统动力学的显着修改,因此,这使我们能够减少测量过程中造成的误差。对于QFI,该信息在参数空间中是本地的,并且在控制问题的定义中没有明确的目标量子状态。本质上非本地的选择性控制过程并非如此。可以将它们视为以不同参数值为特征的系统的不同副本的同时状态对状态控制协议[33,34,36,46-46-50]。选择性控制已广泛用于核磁共振中[51-55]。在此框架中,目标是找到一个控制系统的控件,以达到系统的每个副本,以达到(可能尽可能快)的目标状态,并专门选择目标状态以最大程度地减少测量误差。指纹方法更加详尽,并结合了来自QFI和选择性协议的想法[40-43]。没有特定的目标状态,但目标是最大化一个或几个可观察到的时间演变之间的距离。在这种情况下,考虑了整个动态,而不仅仅是最终系统配置[43]。除了给定优点的最大化外,还可以包括其他约束来分析这些问题,例如控制时间或能量的最小化[56-59]。可以通过这些方法独立地获得不同的控制策略,例如,用于自旋系统的参数估计。自然出现的一个问题是在哪些条件下这些控制方案是等效的,更一般而言,不同技术之间的优点,相似性和差异。本文旨在朝这个方向迈出一步。据我们所知,只有指纹方法已短暂地连接到[60,61]中的Fisher信息,但是QFI和选择性方案之间的关系仍未得到探索。为了简化分析,我们专注于链接
使用量子特征进行参数估计的量子计量学最近引起了人们的注意,因为它可以胜过任何基于资源的经典测量方案[1-8]。尽管可以实现令人印象深刻的精确提高,但只有在优化协议的各个步骤时才能达到最终性能[4,9,10]。标准过程通常考虑最初以最佳初始状态制备的系统的自由演变。但是,在许多示例中,此方法不足以齐奏,必须通过外部控制来修改系统动力学,以实现给定实验约束的最高精度。控制设计通常由最佳控制理论(OCT)执行,该理论证明了其在许多量子应用中的效果[6,11-14]。到目前为止,已经提出了不同的解决方案,以定义最佳控制问题。它们在固定的最终时间时示意性地将要最大化(或最小化)的数量差异。除其他外,我们可以提及量子Fisher信息的最大化(QFI)[10,15-29] ::::::::::::::: [10,15–30],选择性控制协议[31-39]和fingerprinting方法[40-43]。QFI基于与量子系统结合的cram'er-rao的概括[9,44,45]。对于纯状态,QFI与可观察到的特定观察值的方差成正比,该方差与哈密顿的部分衍生物相对于参数估算的部分衍生物。通过最大化此数量,我们确保参数的少量扰动会引起系统动力学的显着修改,因此,这使我们能够减少测量过程中造成的误差。对于QFI,该信息在参数空间中是局部的,并且在控制问题的定义中没有明确的目标量子状态。本质上非本地的选择性控制过程并非如此。可以将它们视为同时的状态到状态控制协议,用于以参数的不同值为特征的系统的不同副本[33,34,36,46-46-50]。选择性控制已广泛用于核磁共振中[51-55]。在此框架中,目标是找到一个控件,该控件使我们能够(可能尽可能快)为系统的每个副本达到目标状态,并专门选择目标状态以最大程度地减少测量误差。填充方法更加详尽,并结合了来自QFI和选择性协议的想法[40-43]。没有特定的目标状态,但目标是最大化一个或几个可观察到的时间演变之间的距离。在这种情况下,考虑了整个动态,而不仅仅是最终系统配置[43]。除了给定功绩的最大化外,还可以包括其他约束来分析这些问题,例如最小化控制时间或能量[56-59]。不同的控制策略。自然出现的一个问题是在哪些条件下这些控制方案是等效的,更普遍地说,不同技术之间的优点,相似性和差异。本文旨在朝这个方向迈出一步。据我们所知,只有固定方法才与[60,61]中的Fisher信息连接起来,但是QFI与选择性协议之间的关系仍未得到探索。为了简化分析,我们专注于链接
通常,使用各种方法(例如非线性控制和最佳控制)开发了导弹指导和控制系统。它们由指导和控制组成,并已单独开发。先前的研究是在指导循环与控制循环之间没有耦合的前提下进行的。在Ref [1]中,为导弹控制设计了三环结构,并通过线性二次调节器得出了控制增益。ref [2]使用后替式技术,并结合了状态重建和神经网络以增强鲁棒性。ref [3]使用非线性滑动模式控制(SMC)技术来避免聊天问题,并根据边界层厚度分析E ff ect。尽管先前研究的表现令人满意,但是设计和整合指导和控制是复杂而昂贵的。另外,由于快速的几何变化或系统的稳定性,控制器无法遵循加速命令。解决这些问题,是一种同时处理指导和控制的集成指导和控制方法(IGC)。参考。 [4,5]定义了导弹的动力学,并基于模型预测控制(MPC)进行了IGC研究。 参考。 [6]设计了SMC,以最大程度地减少零-E ff ort-ort-biss(ZEM),即已知目标的操纵加速度的前提。 参考。 [7]开发了IGC系统,该系统通过将SMC技术与强大的干扰观察者相结合,可以使干扰可靠。参考。[4,5]定义了导弹的动力学,并基于模型预测控制(MPC)进行了IGC研究。参考。 [6]设计了SMC,以最大程度地减少零-E ff ort-ort-biss(ZEM),即已知目标的操纵加速度的前提。 参考。 [7]开发了IGC系统,该系统通过将SMC技术与强大的干扰观察者相结合,可以使干扰可靠。参考。[6]设计了SMC,以最大程度地减少零-E ff ort-ort-biss(ZEM),即已知目标的操纵加速度的前提。参考。 [7]开发了IGC系统,该系统通过将SMC技术与强大的干扰观察者相结合,可以使干扰可靠。参考。[7]开发了IGC系统,该系统通过将SMC技术与强大的干扰观察者相结合,可以使干扰可靠。参考。 [8]考虑了观察目标状态的带状搜索者的视野。 参考。 [9]考虑了末端冲击角,以增强截距的E ff效果。 参考。 [10]进行了一项研究,以使用两个快速和缓慢的控制器来应对快速的几何变化。 尽管总体研究产生了令人满意的表现,但他们也没有考虑使用噪音损坏的观察。 为了减轻这个问题,深入的加强学习(DRL)正在吸引人们作为一种新方法。 DRL是增强学习的领域,它结合了深层的神经网络和增强学习算法,因此代理商与环境互动并以最大的奖励学习了政策。 这种方法在没有预定义的解决方案的情况下解决了解决问题的巨大潜力,并已用于导弹指导和控制系统。 Ref [11]进行了一项研究,以使用深层确定性策略梯度(DDPG)技术替换导弹态度控制器。 参考。 [12]试图使用2D运动学中的DDPG技术替换现有的指导技术。 但是,基于DRL的研究并未在IGC系统中积极进行。 在这项研究中,为了克服上述研究的局限性,我们提出了基于DRL的集成指导和控制法。 此方法通过将指导和控制纳入策略网络而进行。 为此,导弹参考。[8]考虑了观察目标状态的带状搜索者的视野。参考。 [9]考虑了末端冲击角,以增强截距的E ff效果。 参考。 [10]进行了一项研究,以使用两个快速和缓慢的控制器来应对快速的几何变化。 尽管总体研究产生了令人满意的表现,但他们也没有考虑使用噪音损坏的观察。 为了减轻这个问题,深入的加强学习(DRL)正在吸引人们作为一种新方法。 DRL是增强学习的领域,它结合了深层的神经网络和增强学习算法,因此代理商与环境互动并以最大的奖励学习了政策。 这种方法在没有预定义的解决方案的情况下解决了解决问题的巨大潜力,并已用于导弹指导和控制系统。 Ref [11]进行了一项研究,以使用深层确定性策略梯度(DDPG)技术替换导弹态度控制器。 参考。 [12]试图使用2D运动学中的DDPG技术替换现有的指导技术。 但是,基于DRL的研究并未在IGC系统中积极进行。 在这项研究中,为了克服上述研究的局限性,我们提出了基于DRL的集成指导和控制法。 此方法通过将指导和控制纳入策略网络而进行。 为此,导弹参考。[9]考虑了末端冲击角,以增强截距的E ff效果。参考。 [10]进行了一项研究,以使用两个快速和缓慢的控制器来应对快速的几何变化。 尽管总体研究产生了令人满意的表现,但他们也没有考虑使用噪音损坏的观察。 为了减轻这个问题,深入的加强学习(DRL)正在吸引人们作为一种新方法。 DRL是增强学习的领域,它结合了深层的神经网络和增强学习算法,因此代理商与环境互动并以最大的奖励学习了政策。 这种方法在没有预定义的解决方案的情况下解决了解决问题的巨大潜力,并已用于导弹指导和控制系统。 Ref [11]进行了一项研究,以使用深层确定性策略梯度(DDPG)技术替换导弹态度控制器。 参考。 [12]试图使用2D运动学中的DDPG技术替换现有的指导技术。 但是,基于DRL的研究并未在IGC系统中积极进行。 在这项研究中,为了克服上述研究的局限性,我们提出了基于DRL的集成指导和控制法。 此方法通过将指导和控制纳入策略网络而进行。 为此,导弹参考。[10]进行了一项研究,以使用两个快速和缓慢的控制器来应对快速的几何变化。尽管总体研究产生了令人满意的表现,但他们也没有考虑使用噪音损坏的观察。为了减轻这个问题,深入的加强学习(DRL)正在吸引人们作为一种新方法。DRL是增强学习的领域,它结合了深层的神经网络和增强学习算法,因此代理商与环境互动并以最大的奖励学习了政策。这种方法在没有预定义的解决方案的情况下解决了解决问题的巨大潜力,并已用于导弹指导和控制系统。Ref [11]进行了一项研究,以使用深层确定性策略梯度(DDPG)技术替换导弹态度控制器。参考。 [12]试图使用2D运动学中的DDPG技术替换现有的指导技术。 但是,基于DRL的研究并未在IGC系统中积极进行。 在这项研究中,为了克服上述研究的局限性,我们提出了基于DRL的集成指导和控制法。 此方法通过将指导和控制纳入策略网络而进行。 为此,导弹参考。[12]试图使用2D运动学中的DDPG技术替换现有的指导技术。但是,基于DRL的研究并未在IGC系统中积极进行。在这项研究中,为了克服上述研究的局限性,我们提出了基于DRL的集成指导和控制法。此方法通过将指导和控制纳入策略网络而进行。为此,导弹