本文介绍了一种用于捕获离子的量子实验中磁场噪声的前馈补偿系统。该补偿系统在两个实验装置中实现,一个用于量子模拟,另一个用于精密光谱学。在这两个实验中,量子比特都被编码在一对捕获的 40 Ca + 离子的电子能级中。补偿系统用于抑制实验室中由 50 Hz 电源线引起的环境磁场噪声。基于磁场线圈和函数发生器的前馈系统采用一种简单的技术方法,以产生调制磁场。前馈补偿系统的工作原理是施加异相磁场,以破坏性地叠加离子位置的磁场噪声。对于函数发生器,使用可编程的 RedPitaya 板。在这项工作中,为该板开发了一个控制软件,允许补偿系统快速运行。此外,还开发了一个实验序列,其中离子量子比特被用作量化磁场噪声的传感器。该实验依赖于 CPMG π 脉冲序列。
公司将可配置、高功率电机驱动器与精确遥测功能相结合,设计易于抗辐射。位于低温冷却器附近的遥测聚合单元 (TAU) 通过在本地数字化传感器数据以传输回控制器,最大限度地减少了敏感低温冷却器反馈的衰减和污染,而主控制单元 (MCU) 中的多个 500 W 驱动通道以高达 95% 的效率提供功率波形。模块化设计概念允许在需要额外通道时添加驱动卡,或移除驱动卡以减小尺寸、重量和功耗。TAU 包含多达 14 个外部传感器,总数据速率高达每秒 800,000 个样本,由控制软件动态分配给任何遥测组合。可以通过安装商用组件或利用替代控制方案降低抗辐射控制器组件的成本来实现低成本版本的电子设备。在雷神公司进行了一次铜板演示,其中驱动了高容量 RSP2 (HC-RSP2) 低温冷却器,温度和振动控制回路在高功率和低温下关闭。本文讨论了 MACE 的开发、测试和经验教训。
博士前合同的关键活动:合同 CI-24-271: - 设计一个带有传感器的嵌入式系统,用于地面车辆的稳定性控制。 - 利用人工智能开发算法和稳定性控制软件。 - 针对应用范围优化系统软件。 - 对开发的原型进行验证和评估。合同 CI-24-272:- 土工膜的传感化,用于环境的安全控制。 - 设计嵌入土工膜的用于处理传感器信号的系统。 - 嵌入式系统监控系统的开发。 - 对所开发的解决方案进行验证和评估。合同 CI-24-276: - 在老年人家庭护理背景下的智能虚拟助手研究。 - 结合处理传感器信号和理解/生成自然语音的能力(LLM)。 - 在性能和消耗限制下为虚拟助手设计嵌入式系统。 - 分析添加联合 ML 训练的嵌入式设备分布式系统。 - 对所开发的解决方案进行验证和评估。合同 CI-24-277: - 计算机视觉和时间序列分析模型的人工智能模型分析。 - 研究处理分析模型的 RISC-V 标准。 - 基于RISC-V架构的模型硬件加速技术的设计。 - 对所开发的解决方案进行验证和评估。合同 CI-24-278: - 用于应用领域的多传感器嵌入式系统的智能处理。
双光子钙成像技术可以以单细胞分辨率读取活体生物体内大量神经元的活动,从而为大脑如何处理信息提供新的见解。全息光遗传学使我们能够直接触发这些神经元的活动,从而增加了将信息注入活体大脑的可能性。然而,光遗传学触发模拟“自然”信息的活动需要基于功能网络的实时分析来识别刺激目标。我们开发了 NeuroART(实时神经元分析)软件,该软件可以实时读取神经元活动,并集成相关性和同步性以及感官元数据的下游分析。以听觉刺激为例,我们展示了实时推断视野中每个神经元对感官信息处理的贡献。为了避免显微镜硬件的限制并实现多个研究小组的合作,NeuroART 无需修改显微镜控制软件即可利用显微镜数据流,并且与各种显微镜平台兼容。 NeuroART 还集成了驱动空间光调制器 (SLM) 的功能,用于对最佳刺激目标进行全息光刺激,从而实现功能网络的实时修改。用于光刺激实验的神经元是从 Sprague Dawley 雌雄大鼠胚胎中提取的。
Sooyung Byeon是普渡大学航空和宇航员的博士后研究员。他获得了博士学位。 2024年,普渡大学的航空和宇航学专业。从2014年到2019年,他曾在Satrec Initiative,Ltd. 担任高级卫星飞行控制软件工程师 分别于2012年和2014年分别获得了韩国大道韩国科学技术学院(KAIST)的航空航天工程学士学位和硕士学位。 他最近的研究重点是开发网络物理人类系统(CPHS),这些系统有助于在复杂和不确定的环境中进行自主(网络物理)系统与人类之间的控制和人类之间的组合。 他的研究兴趣包括人类的建模,增强学习,人类自主组合和应用实验。从2014年到2019年,他曾在Satrec Initiative,Ltd.分别于2012年和2014年分别获得了韩国大道韩国科学技术学院(KAIST)的航空航天工程学士学位和硕士学位。他最近的研究重点是开发网络物理人类系统(CPHS),这些系统有助于在复杂和不确定的环境中进行自主(网络物理)系统与人类之间的控制和人类之间的组合。他的研究兴趣包括人类的建模,增强学习,人类自主组合和应用实验。
19. 摘要(如有必要,请继续修改,并通过块号标识)目前,人工智能和机器人领域的研究人员对寻找更有效的方法将与自动驾驶汽车的任务规划和控制相关的高级符号计算与低级车辆控制软件联系起来有着浓厚的兴趣。此类控制涉及许多过程,其多样性导致了许多通用软件架构的提案,旨在为相关软件组件的组织和交互提供高效而灵活的框架。理性行为模型 (RBM) 就是根据这些要求而设计的,它由三个级别组成,分别称为策略级、任务级和执行级。每个级别都基于不同的执行机制来影响支持解决全局控制问题的计算。 RBK 架构的独特之处在于,它通过指定不同的编程范例来实现每个软件级别。具体来说,RBM 在战略级别使用基于规则的编程,因此任务专家无需在较低级别重新编程即可在现场重新配置任务。战术级别将车辆行为实现为使用基于对象的语言(如 A&R)编程的软件对象的方法。这些行为由战略级别的规则满足发起,因此将车辆行为本地化。
在飞机开发中,在系统进行物理测试之前和之后,了解和评估系统的行为、性能、安全性和其他方面至关重要。仿真模型用于获取知识,以便在所有开发阶段做出决策。建模和仿真 (M&S) 在飞机系统开发中,例如燃料、液压和电力系统,如今已成为设计过程的重要组成部分。通过 M&S,可以在流程的早期发现功能或系统中的问题。越来越多的最终系统验证依赖于仿真模型的结果,而不是昂贵的飞行测试。因此,对复杂系统的集成模型及其验证的需求正在增加。不仅需要一个模型,还需要几个具有已知精度和有效性范围的交互模型。计算机性能和建模与仿真工具的开发使大规模仿真成为可能。本论文包括四篇与这些主题相关的论文。第一篇论文描述了一种建模技术,即托管仿真,即如何使用来自不同工具的模型来模拟完整的系统,例如来自一个工具的控制软件和来自另一个工具的设备模型。第二篇论文描述了 M&S 在飞机开发中的应用。第三篇和第四篇论文描述了如何通过敏感性分析和不确定性来源来增加对模型有效性的了解。在论文中
随着第一颗立方体卫星的发射,人们开始将卫星轻松送入近地轨道。如今,世界各地的许多教育机构都在设计、建造和运营立方体卫星,用于教育和科学目的。这篇硕士论文介绍了瑞典基律纳吕勒亚理工大学空间校区为实现灵活地面段而进行的硬件和软件设计和开发。现有的地面站经过改造,可以支持更多的频率和操作模式,使大学未来的纳米卫星项目能够轻松进行空间通信。采购新设备,并使用 19 英寸机架将新设备与现有设备一起安装在新位置。本论文介绍了一种使用软件定义无线电的地面段设计,以提高灵活性和适应性。地面站的软件开发与北极商业孵化器中的一家初创公司 Remos Space Systems 共同进行,该公司正在开发一款商业地面站软件。此外,还对在大学建立 S 波段接收地面站进行了简要分析,并对任务控制软件进行了权衡分析。该论文为太空校园地面站再次投入运行奠定了基础,并强调了未来的发展需求。
Iris Technology Corporation 开发的模块化高级低温冷却器电子设备 (MACE) 系统将可配置的高功率电机驱动器与精确遥测功能相结合,其设计可承受辐射加固。位于低温冷却器附近的遥测聚合单元 (TAU) 通过在本地数字化传感器数据以传输回控制器,最大限度地减少了敏感低温冷却器反馈的衰减和污染,而主控制单元 (MCU) 中的多个 500 W 驱动通道可提供高达 95% 效率的功率波形。模块化设计概念允许在需要更多通道时添加驱动卡,或移除驱动卡以减小尺寸、重量和功耗。TAU 集成了多达 14 个外部传感器,总数据速率高达每秒 800,000 个样本,由控制软件动态分配给任何遥测组合。可以通过安装商用组件或利用替代控制方案来降低抗辐射控制器组件的成本,从而实现电子设备的低成本版本。雷神公司进行了一次演示,演示中驱动了高容量 RSP2 (HC-RSP2) 低温冷却器,温度和振动控制环路在高功率和低低温下关闭。本文讨论了 MACE 的开发、测试和经验教训。
Compact 21 系统将使已经配备 RIBER 机器的实验室能够通过在现有生产线上添加新的超高真空 (UHV) 室来增强其多功能性,并增加其工艺或与其他研究小组共享其设备。Compact 21 机器将通过结合 RIBER 开发的新一代蒸发器以及一系列仪器(包括 EZ CURVE 原位控制装置和 Crystal XE 过程控制软件),为用户提供增强的安全性、可靠性和易用性。这份新订单不仅证实了全球最畅销的研究 MBE 系统 Compact 21 系列的持续商业成功,还强调了 RIBER MBE 系统适用于最高标准的复合半导体研究。这份新订单将于 2024 年交付。关于 RIBER RIBER 是 MBE(分子束外延)设备的全球市场领导者。它为半导体行业设计和生产设备,并为客户提供科学和技术支持(硬件和软件),维护他们的设备并优化其性能和产出水平。RIBER 的设备加速了电子产品的性能,在先进半导体系统的开发中发挥着重要作用,这些系统用于从信息技术到光子学(激光器、传感器等)、5G 电信网络和包括量子计算领域的研究等众多应用。