摘要:新一代可编程网络允许部署机制来有效控制动态带宽分配,并确保延迟或丢失敏感的物联网 (IoT) 服务的关键性能指标 (KPI) 方面的服务质量 (QoS)。为了在软件定义网络 (SDN) 中实现灵活、动态和自动化的网络资源管理,人工智能 (AI) 算法可以提供有效的解决方案。在本文中,我们提出了网络资源分配的解决方案,其中 AI 算法负责控制 SDN 中的基于意图的路由。本文重点研究了使用基于人工神经网络的深度 Q 学习方法在两个指定路径之间最佳切换意图的问题。所提出的算法是本文的主要创新之处。开发的网络应用仿真系统 (NAPES) 允许使用不同的模式测试 AI 解决方案,以评估所提解决方案的性能。对 AI 算法进行了训练,以最大化网络中的总吞吐量和有效的网络利用率。结果证实了应用人工智能方法解决下一代网络性能改善问题的有效性,以及 NAPES 流量生成器在物联网网络系统评估中实现高效经济和技术部署的实用性。
摘要 - 最近自主和半自治的无人机(UAV)群开始从各种民用应用领域获得大量的研究兴趣和需求。但是,为了成功执行任务,无人机群需要全球导航卫星系统(GNSS)信号,特别是全球定位系统(GPS)信号进行导航。不幸的是,民用GPS信号未经加密且未进行,这有助于执行GPS欺骗攻击。在这些攻击中,对手模仿了真实的GPS信号,并将其广播到目标无人机,以更改其路线,迫使其降落或崩溃。在这项研究中,我们提出了一种GPS欺骗检测机制,能够检测单发射器和多发送器GPS欺骗攻击,以防止上述结果。我们的检测机制是基于比较从GPS坐标计算出的每两个群体之间的距离与从相同群体之间的脉冲无线电超宽带获得的距离所获得的距离。如果距离的差异大于所选阈值,则检测到GPS欺骗攻击。
摘要 - 真实的硬件PLC非常昂贵,有时科学家/工程师无法建立小型测试床并进行实验或学术研究。为此,OpenPLC项目引入了合理的替代选项,并在编程代码,模拟物理过程以及使用低成本设备(例如Raspberry Pi和Arduino uno)中提供了灵感。不幸的是,OpenPLC项目的设计没有任何安全性,即缺乏保护机制,例如加密,授权,反复制算法等。这使攻击者可以完全访问OpenPLC并进行未经授权的更改,例如启动/停止PLC,设置/更新密码,删除/更改用户程序等。在本文中,我们进行了深入的调查,并披露了OpenPLC项目中存在的一些漏洞,表明攻击者既没有对用户凭据,也不对物理过程进行任何先验知识;可以访问关键信息,并有效地更改OpenPLC执行的用户程序。我们所有的实验均在最新版本的OpenPLC(即V3)上进行。我们的实验结果证明,攻击者可能会混淆受感染的OpenPLC控制的物理过程。最后,我们建议OpenPLC创始人和工程师关闭所披露的漏洞并具有更安全的基于OpenPLC的环境的安全建议。索引条款 - OpenPlc;网络攻击;网络安全;控制逻辑注射攻击;
摘要:可编程逻辑控制器(PLC)构成了关键基础设施(CIS)和工业控制系统(ICS)的重要组成部分。它们具有定义如何驱动和操作关键过程的控制逻辑,例如核电站,石化工厂,水处理系统和其他设施。不幸的是,这些设备并不完全安全,并且容易受到恶意威胁,尤其是那些利用PLC控制逻辑中的漏洞的设备。这些威胁称为控制逻辑注射攻击。他们主要旨在破坏由裸露的PLC控制的物理过程,从而造成对目标系统的灾难性损害,如Stuxnet所示。回顾过去十年,许多研究努力探索和讨论这些威胁。在本文中,我们介绍了与控制逻辑注射攻击有关PLC的最新作品。为此,我们根据三种主要攻击方案的攻击者技术为安全研究界提供了新的系统化。对于本工作中介绍的每项研究,我们概述了攻击策略,工具,安全目标,受感染的设备和潜在的漏洞。基于我们的分析,我们强调了当前保护PLC免受这种严重攻击的安全挑战,并建议对未来的研究方向提出安全建议。
摘要:本文提出并分析了基于遗传算法的置换控制逻辑,该控制逻辑应用于离岸多源公园的聚合器。在反馈中考虑了共同耦合点处的能量损失。本文着重于海上分布的能源,例如光伏(PV),风和波浪功率。这项研究的主要贡献是对控制系统的开发,该控制系统能够单独跟踪需求曲线所施加的设定点,引入了近海流动PV/Wind/Wave Wave Power Farms的容量因素,以及将纯净的越野可再生能源揭育为潜在的无潜在储存源,作为潜在的无潜在储藏量。旧金山附近地点的案例研究结果表明,通过实施拟议的方法,能源损失和容量因素会积极影响。
大一(夏季)卡特彼勒空调 (CAT 85) — 2 个学分 学习空调在农业、建筑和重型卡车应用中的理论和用途。您将在学习使用行业服务设备(制冷剂识别器、泄漏检测器和压力表歧管)的同时,回收、再循环和再充注制冷剂。您将熟练理解系统压力、电子控制、传感器和控制逻辑。
摘要 - 我们提出了一种用于开发可进行逻辑控制器(PLC)恶意软件的新方法,该方法被证明比当前策略更灵活,弹性和影响力。虽然先前对PLC的攻击感染了PLC计算的控制逻辑或固件部分,但我们提出的恶意软件专门感染了PLC中新兴嵌入式Webervers托管的Web应用程序。此策略允许恶意软件使用Admin Portal网站公开的合法Web应用程序接口(API)偷偷地攻击基础现实世界机械。此类攻击包括伪造传感器读数,禁用安全警报和降解物理执行器。此外,这种方法比现有的PLC恶意软件技术(控制逻辑和固件)具有显着优势,例如平台独立性,易于放弃和更高的持久性。我们的研究表明,工业控制环境中Web技术的出现引入了IT域或消费者IoT设备中不存在的新安全问题。根据PLC控制的工业过程,我们的攻击可能会导致灾难性事件甚至丧生。,我们通过使用该恶意软件在广泛使用的PLC模型上实现了这种恶意软件的原型实现来验证这些主张,通过利用我们在研究中发现的零日漏洞,这是通过广泛使用的PLC模型进行的。我们的调查表明,每个主要的PLC供应商(全球市场份额的80%[1])都会产生一个容易受到我们拟议的攻击载体的plc。最后,我们讨论潜在的对策和缓解。
低运营成本 AWS 是精心设计的成果,旨在优化冷水机组的能源效率,从而降低运营成本,提高盈利能力、效率和经济管理。AWS 冷水机组采用新型高效 McQuay 单转子螺杆压缩机设计,大冷凝器盘管表面积可实现最大热传递和低排放压力,采用先进技术的冷凝器风扇,单程纯逆流壳管直接膨胀蒸发器,制冷剂压降低。低运行噪音水平 最新的压缩机设计使用单个主转子和两个相邻的旋转复合闸转子,使气体流速和随后的噪音水平达到最低水平,独特的新型风扇以极低的噪音水平移动大量空气,并且几乎无振动运行,因此在满负荷和部分负荷条件下的噪音水平都非常低。出色的可靠性 AWS 冷水机组根据尺寸有两个或三个真正独立的制冷剂回路,以确保任何维护(无论是计划内还是非计划内)的最大安全性。它们配备了坚固的压缩机设计,采用先进的复合压缩机闸转子材料和主动控制逻辑,并经过了完整的工厂运行测试,以实现优化的无故障运行。无限容量控制制冷容量控制通过微处理器系统控制的单螺杆非对称压缩机无级变化。每个单元都具有从 100% 降至 12%(双压缩机单元)或 7%(三压缩机单元)的无级容量控制。这种调节可使压缩机容量与建筑物冷却负荷完全匹配,而不会导致蒸发器水温波动。只有通过无级控制才能避免这种冷冻水温度波动。事实上,通过压缩机负荷阶跃控制,在部分负荷下,压缩机容量与建筑物冷却负荷相比会过高或过低。结果是降低了冷却器的能量成本,特别是在冷却器大部分时间运行的部分负荷条件下。无级调节单元具有阶跃调节单元无法比拟的优势。能够随时跟踪系统能源需求,并且能够提供稳定的出水温度,不会偏离设定点,这两点让您明白,只有使用无级调节装置才能满足系统的最佳运行条件。 卓越的控制逻辑 新的 MicroTech III 控制器提供易于使用的控制环境。控制逻辑旨在提供最高效率,在异常运行条件下继续运行,并提供装置运行历史记录。最大的好处之一是易于与 LonWorks、Bacnet 接口,以太网 TCP/IP 或 Modbus 通信。
低运营成本 AWS 是精心设计的成果,旨在优化冷水机组的能源效率,从而降低运营成本,提高盈利能力、效率和经济管理。AWS 冷水机组采用新型高效 McQuay 单转子螺杆压缩机设计,大冷凝器盘管表面积可实现最大热传递和低排放压力,采用先进技术的冷凝器风扇,单程纯逆流壳管直接膨胀蒸发器,制冷剂压降低。低运行噪音水平 最新的压缩机设计使用单个主转子和两个相邻的旋转复合闸转子,使气体流速和随后的噪音水平达到最低水平,独特的新型风扇以极低的噪音水平移动大量空气,并且几乎无振动运行,因此在满负荷和部分负荷条件下的噪音水平都非常低。出色的可靠性 AWS 冷水机组根据尺寸有两个或三个真正独立的制冷剂回路,以确保任何维护(无论是计划内还是非计划内)的最大安全性。它们配备了坚固的压缩机设计,采用先进的复合压缩机闸转子材料和主动控制逻辑,并经过了完整的工厂运行测试,以实现优化的无故障运行。无限容量控制制冷容量控制通过微处理器系统控制的单螺杆非对称压缩机无级变化。每个单元都具有从 100% 降至 12%(双压缩机单元)或 7%(三压缩机单元)的无级容量控制。这种调节可使压缩机容量与建筑物冷却负荷完全匹配,而不会导致蒸发器水温波动。只有通过无级控制才能避免这种冷冻水温度波动。事实上,通过压缩机负荷阶跃控制,在部分负荷下,压缩机容量与建筑物冷却负荷相比会过高或过低。结果是降低了冷却器的能量成本,特别是在冷却器大部分时间运行的部分负荷条件下。无级调节单元具有阶跃调节单元无法比拟的优势。能够随时跟踪系统能源需求,并且能够提供稳定的出水温度,不会偏离设定点,这两点让您明白,只有使用无级调节装置才能满足系统的最佳运行条件。 卓越的控制逻辑 新的 MicroTech III 控制器提供易于使用的控制环境。控制逻辑旨在提供最高效率,在异常运行条件下继续运行,并提供装置运行历史记录。最大的好处之一是易于与 LonWorks、Bacnet 接口,以太网 TCP/IP 或 Modbus 通信。