摘要 - 真实的硬件PLC非常昂贵,有时科学家/工程师无法建立小型测试床并进行实验或学术研究。为此,OpenPLC项目引入了合理的替代选项,并在编程代码,模拟物理过程以及使用低成本设备(例如Raspberry Pi和Arduino uno)中提供了灵感。不幸的是,OpenPLC项目的设计没有任何安全性,即缺乏保护机制,例如加密,授权,反复制算法等。这使攻击者可以完全访问OpenPLC并进行未经授权的更改,例如启动/停止PLC,设置/更新密码,删除/更改用户程序等。在本文中,我们进行了深入的调查,并披露了OpenPLC项目中存在的一些漏洞,表明攻击者既没有对用户凭据,也不对物理过程进行任何先验知识;可以访问关键信息,并有效地更改OpenPLC执行的用户程序。我们所有的实验均在最新版本的OpenPLC(即V3)上进行。我们的实验结果证明,攻击者可能会混淆受感染的OpenPLC控制的物理过程。最后,我们建议OpenPLC创始人和工程师关闭所披露的漏洞并具有更安全的基于OpenPLC的环境的安全建议。索引条款 - OpenPlc;网络攻击;网络安全;控制逻辑注射攻击;
摘要 - 最近自主和半自治的无人机(UAV)群开始从各种民用应用领域获得大量的研究兴趣和需求。但是,为了成功执行任务,无人机群需要全球导航卫星系统(GNSS)信号,特别是全球定位系统(GPS)信号进行导航。不幸的是,民用GPS信号未经加密且未进行,这有助于执行GPS欺骗攻击。在这些攻击中,对手模仿了真实的GPS信号,并将其广播到目标无人机,以更改其路线,迫使其降落或崩溃。在这项研究中,我们提出了一种GPS欺骗检测机制,能够检测单发射器和多发送器GPS欺骗攻击,以防止上述结果。我们的检测机制是基于比较从GPS坐标计算出的每两个群体之间的距离与从相同群体之间的脉冲无线电超宽带获得的距离所获得的距离。如果距离的差异大于所选阈值,则检测到GPS欺骗攻击。
摘要:新一代可编程网络允许部署机制来有效控制动态带宽分配,并确保延迟或丢失敏感的物联网 (IoT) 服务的关键性能指标 (KPI) 方面的服务质量 (QoS)。为了在软件定义网络 (SDN) 中实现灵活、动态和自动化的网络资源管理,人工智能 (AI) 算法可以提供有效的解决方案。在本文中,我们提出了网络资源分配的解决方案,其中 AI 算法负责控制 SDN 中的基于意图的路由。本文重点研究了使用基于人工神经网络的深度 Q 学习方法在两个指定路径之间最佳切换意图的问题。所提出的算法是本文的主要创新之处。开发的网络应用仿真系统 (NAPES) 允许使用不同的模式测试 AI 解决方案,以评估所提解决方案的性能。对 AI 算法进行了训练,以最大化网络中的总吞吐量和有效的网络利用率。结果证实了应用人工智能方法解决下一代网络性能改善问题的有效性,以及 NAPES 流量生成器在物联网网络系统评估中实现高效经济和技术部署的实用性。