随着探索目标越来越远,太空任务变得越来越雄心勃勃,同时需要更大的制导和通信预算。这些对距离和控制的相互冲突的需求推动了对现场智能决策的需求,以减少通信和控制限制。虽然对人工智能和机器学习 (AI/ML) 软件模块的地面研究呈指数级增长,但以快速和廉价的形式在太空中实验验证此类软件模块的能力却没有增长。为此,美国宇航局艾姆斯研究中心的纳米轨道研讨会 (NOW) 小组正在通过 TechEdSat (TES-n) 飞行系列中编程称为 BrainStack 的“商业”可用前沿计算平台进行飞行评估测试。作为 BrainStack 的一部分选择的处理器具有理想的尺寸、封装和功耗,可轻松集成到立方体卫星结构中。这些实验包括对小型高性能 GPU 以及最近的 LEO 操作中的神经形态处理器的评估。此外,还计划测量这些处理器所经受的辐射环境,以了解这些新架构因长期太空辐射暴露而导致的性能下降或计算伪影。这个不断发展的灵活协作环境涉及 NASA 和其他组织的各个研究团队,旨在成为一个便捷的轨道测试平台,许多预期的未来太空自动化应用可在此平台上进行初步测试。
注入温室气(例如二氧化碳)进入深层地下水库以进行永久存储,当注射诱导的应力超过关键阈值时,会无意中导致故障重新激活,Caprock破裂和温室气体泄漏。必须在注射过程中密切监测压力的演变和二氧化碳羽流的运动,以允许及时进行补救措施或快速调整存储设计。在注射过程的各个阶段提取预先存在的流体,称为压力管理,可以减轻相关的风险并减少环境影响。但是,确定最佳压力管理策略通常需要数千个模拟,从而使该过程计算出色。本文介绍了一种基于替代模型的新型强化学习方法,用于为地质二氧化碳隔离设计最佳的压力管理策略。我们的方法包括两个步骤。首先,通过嵌入到控制方法开发替代模型,该方法采用编码型转换结构来学习潜在或减小空间中的动力学。利用这种代理模型,利用强化学习来找到一种最大化经济利益的最佳策略,同时满足各种控制限制。加固学习代理人将获得潜在的状态表示,并立即为CO2隔离量身定制的奖励,并选择受预定义工程限制的实时控制,以最大程度地提高长期累积奖励。为了证明其有效性,该框架应用于将CO2注入盐水含水层的组成模拟模型。结果表明,我们基于替代模型的强化学习方法显着优化了CO2固相策略,与基线情景相比,经济增长显着。
语言引导的图像编辑扩散模型的最新进展通常由繁琐的及时工程设计,以精确表达所需的更改。从野外图像示例中对指导的直观替代呼吁,可以帮助用户将他们想象中的编辑栩栩如生。基于现代示例的编辑方法回避利用预先现有的大型文本对图像(TTI)模型所学到的丰富潜在空间,并以精心策划的目标功能来重新接受培训以完成任务。尽管有些有效,但这需要重要的构成资源,并且缺乏与不同的基本模型和任意示例计数的兼容性。在进一步研究中,我们还发现这些技术将用户控制限制在整个编辑区域中仅应用统一的全球变化。在本文中,我们介绍了一个新颖的框架,用于使用现成的扩散模型(称为像素)进行典范驱动的编辑,以通过对编辑进行粒状控制,从而在像素或区域水平上进行调整,从而实现自定义。我们的方法仅在插入期间运行,以促进模仿编辑,使用户能够从动态数量的参考图像或多模式提示中汲取灵感,并逐步合并所有变化,而无需重新调整或调整现有TTI模型。这种细粒度控制的能力开辟了一系列新的可能性,包括对单个对象的选择性修改和指定逐渐的空间变化。我们证明,像素可以很好地编辑高质量的编辑,从而显着改善了定量指标和人类评估。通过使高质量的图像编辑更易于访问,Pixels有可能在易于使用任何开源图像生成模型的情况下向更广泛的受众提供专业级的编辑。
量子技术仍处于早期的早期,但是如今,新兴行业的轮廓正在塑造。作为欧洲领先的量子生态系统之一,Quantum delta nl认为,我们有责任提前思考:量子行业将如何和应该如何预期它对经济,社会和全球技术格局的影响?作为国家技术计划,我们正在与全球合作伙伴合作。量子是一项全球努力,其联系超越了全球国家的国家边界。同时,我们认为Quantum是真正欧洲深层技术议程的一部分。为了确保我们为这个新兴行业创造坚实的基础,我们正在与科学,行业和政策的相关参与者进行对话,涉及量子在加强欧洲主权方面的作用。在此时间点,尚无用于量子计算,通信和传感系统的主要设计。该技术正在迅速发展;我们看到世界各地的数百个实体竞争捕获量子技术产生的独特价值。早些时候,量子delta nl发表了两次有关量子计算和通信的供应链评估,其中范围仅限于关键组件1。在这份白皮书中,我们从这些报告中提出了一项建议,并深入了解关键原材料。随着年轻的量子行业的成熟,欧盟(EU)并行,已转向定义关键原材料(CRMS)的新政策,这对于我们未来的经济体是必不可少的。为此,欧盟委员会于2023年3月启动了《 CRM法》,以保护对当前和未来技术必不可少的材料的安全性2。最近中国对镀耐,锗和石墨的出口控制限制是他们与美国战略竞争的一部分,这是该法规的重要性。这些限制可能会限制欧盟对对半导体和电池生产至关重要的材料的访问。