........................................................................................................................................... 十五
________________________________________ 教授Thiago Augusto Machado Guimarães 博士 乌贝兰迪亚联邦大学 _____________________________________________ 教授我。Felipe Machini Malachias Marques 乌贝兰迪亚联邦大学 _____________________________________ Roberto Martins de Castro Neto 乌贝兰迪亚联邦大学
这句座右铭在我论文写作的三年中一直挂在我的桌子上,如果没有很多人的支持和帮助,这句座右铭也可能成为这项工作的结论,在此我要感谢他们。当然,首先要感谢我的论文指导老师丹尼尔。除了成为此项工作思想的源头之外,您始终明智的指导在本文的各个阶段也发挥了至关重要的作用。我也非常感谢你,乔尔,在我怀疑和质疑的时候,你能够用智慧和人性来指导我。我还要感谢克莱门特,特别是我们一起进行的长时间讨论,这使我对这个因问题多样性而可能很棘手的问题有了新的认识和洞察力。最后,我要向吉尔斯表示衷心的感谢,这些年来我从他身上学到了很多东西。您的严谨和教学方法将成为我的榜样;也感谢大家这些年对我的信任,让我的H∞“事情”终于有了结果!
摘要:本研究文章介绍了一种用于实验性无人遥控飞机主控制面(副翼、方向舵和升降舵)的设计方法。该方法基于每个控制面尺寸所需的机械和气动分析的提议和标准化,考虑到 SAE 航空设计在微型类中的竞赛目标。它用于先前在有关航空设计、计算机流体动力学 (CFD) 软件和飞机可控性法规的参考文献中描述的经验结果,以获得设计变量。基于此信息,设计所需的迭代序列由 C++ 语言代码自动执行,以获得每个表面的最佳特性,从而减少计算错误的可能性、总时间和设计过程中投入的工作量。将该方法应用于最新的飞机设计,可将总控制系统重量与飞机空重之比降低至最低 3.4%。
飞行控制系统将驾驶舱中的飞行员与机翼和尾翼上的可移动控制面连接起来。这些控制面使飞机能够定向运动,以爬升、倾斜、转弯和下降。自 20 世纪初开始可控飞行以来,电线、电缆、摇臂和推杆是将控制面连接到驾驶舱中的操纵杆和方向舵踏板的传统方式。随着飞机重量和尺寸的增加,液压机构被添加为助推器,因为需要更多的动力来移动控制装置。
飞行由奥托·利林塔尔 (Otto Lilienthal) 在 1891 年左右完成,飞机的运动仅通过移动飞行员的身体来控制,即重新定位重心,从今天的角度来看,这很难被视为 FCS。奥托·利林塔尔 (Otto Lilienthal) 也首次尝试通过偏转控制面来控制飞机运动 [1]。利林塔尔滑翔机的控制系统显然是作为纯机械组件设计的。例如,副翼控制面是机翼的末端部分,可以向下包裹以改变机翼的翼型和机翼弯曲部分的攻角,从而增加机翼一部分的升力。表面的控制部分通过一组电线连接到由飞行员致动的环上。这种布局随后被所有其他飞机制造商采用并进一步发展。利林塔尔的环变成了一根棍子,控制面与翼身分离以便于移动。然而,机械连接组件的演变并不那么显著。尽管在某种程度上比几根电线和滑轮复杂得多,但驾驶舱控制装置和控制面之间的机械连接如今在所有小型飞机中都很常见。
滚转和偏航,以及飞机中这些状态的控制,是通过分别改变对升降舵、副翼和方向舵的指令信号来实现的。在本文中,我们仅考虑飞机的两种控制运动,即纵向和滚转运动。这两个控制面是用不同的智能控制器设计和实现的。飞机的这两种运动在飞行过程中很重要,在此期间飞机会从一种状态过渡到另一种状态。为了控制飞机的纵向和滚转运动,分别使用了一组称为升降舵和副翼的控制面。升降舵是位于固定翼飞机后部的可移动控制面,铰接在水平稳定器的后缘,与主翼平行运行,导致飞机旋转,导致飞机爬升和下降,并从机翼获得足够的升力,使飞机以各种速度保持平飞。升降舵是可移动的控制面,可以上下移动。如果升降舵向上旋转,则会减少尾部的升力,导致尾部降低而机头抬高。如果升降舵向下旋转,则会增加尾部的升力,导致尾部抬高而机头降低。降低飞机机头会增加前进速度,而抬高机头会降低前进速度 [1]。
控制结构尺寸是翼身融合设计的主要挑战。这种飞机配置通常具有位于机翼后缘的冗余升降副翼,同时作用于俯仰轴和滚转轴。因此,适当的尺寸需要考虑纵向和横向的耦合标准。此外,由于较大的控制面面积而产生的显著铰链力矩,加上为了安全控制纵向不稳定性而产生的高偏转率,可能会导致过多的功耗和执行器质量损失。因此,在初步设计阶段,非常希望最小化控制面面积,同时确保足够的闭环操纵品质,并限制偏转和偏转率。这里解决了不稳定翼身融合飞机的控制面尺寸和飞行控制律的集成设计问题。使用最新的结构化控制器 H ∞ 非光滑优化工具,在单个步骤中优化纵向和横向控制律以及控制分配模块的增益,同时最小化控制面跨度。确保以下约束:1) 飞行员纵向拉起、2) 飞行员倾斜角度顺序和 3) 纵向湍流的最大偏转角和偏转率。使用这种耦合方法,与初始布局相比,外副翼跨度显著增加,而闭环操纵质量