确保电传操纵系统安全性的方法:空客 VS 波音 Andrew J. Kornecki,Kimberley Hall 安柏瑞德航空大学 美国佛罗里达州代托纳比奇 < kornecka@erau.edu > 摘要 电传操纵 (FBW) 是一种飞行控制系统,使用计算机和相对较轻的电线来取代飞行员驾驶舱控制装置和移动表面之间的传统直接机械连接。FBW 系统已用于制导导弹,随后用于军用飞机。商用飞机实施延迟是由于需要时间开发适当的故障生存技术,以提供足够的安全性、可靠性和可用性。软件生成对高完整性数字 FBW 系统的总工程开发成本贡献很大。讨论了与软件和冗余技术相关的问题。空中客车和波音等领先的商用飞机制造商在其民用客机中采用了 FBW 控制。本文介绍了他们的方法、控制理念的差异以及实现航空公司运营所必需的同等安全保障水平的实施情况。关键词 航空电子、软件工程、软件安全、容错 1.简介 电传操纵 (FBW) 系统是一种基于计算机的飞行控制系统,它用更轻的电线取代了飞行员驾驶舱控制装置和移动表面之间的机械连接。飞行员通过控制飞机机翼和尾翼上的可移动部件(称为飞行控制面)来操纵飞机。计算机将飞行员的命令转换为传送到控制面的电脉冲。空中客车和波音在其商用飞机中利用 FBW 的方式略有不同。本文的目的是比较商用飞机制造商在实施 FBW 系统时使用的不同方法。本文试图从系统和软件工程设计决策的角度来探讨系统的可用性和安全性。
该课程通过应用物理学,动手活动和现实世界的例子介绍了航空和宇航员的基础。学生将面临航空和宇航员的历史和挑战。简介:航空航天的历史,气氛,航空航天车的分类,飞机和航天器的基本组件,车辆控制面和系统,航空航天部门简介,主要航空航天行业和制造商。飞行原则:声音速度,标准气氛的重要性,伯诺利的原理,作用于飞机和航天器上的空气动力学力,空置命名法,压力和速度分布,空气动力,升力和拖拉,升力和拖曳,超音速,超音速效应,超音速效应,空气动力学中心,纵横比比,压力,压力中心,坟墓中心。航空航天推进:推进系统,推进系统的分类,位置和操作原理。飞机和航天器的基本原理,布雷顿周期和汉弗莱循环,喷气发动机,螺旋桨发动机,火箭发动机,ramjet和Scramjet。航天器机械,结构和热设计:航空航天结构,航空航天材料的基本原理,对结构故障模式的理解,航空航天结构中的外部和内部负载,机械组件的强度,重点是故障和疲劳设计,热温度和冷气温和寒冷的热量,从可移动的遮盖物和遮阳板上的热循环。启动车辆和卫星工程:启动车辆动力学,基本轨道力学,卫星工程历史,卫星应用和轨道,GMAT软件,卫星子系统,清除太空碎片,拆卸太空碎片,任务设计理念,太空环境,闭环问题解决方案解决方案解决管理,环境测试,环境测试。太空机器人:无人自主系统的感知火星和月球探索;控制无人自主系统火星和月球探索;航空工程的未来挑战;无人自主系统(UAS)火星和月球探索简介。
确保电传操纵系统安全性的方法:空客 VS 波音 Andrew J. Kornecki、Kimberley Hall 安柏瑞德航空大学 美国佛罗里达州代托纳比奇 < kornecka@erau.edu > 摘要 电传操纵 (FBW) 是一种飞行控制系统,它使用计算机和相对较轻的电线取代飞行员驾驶舱控制装置和移动表面之间的传统直接机械连接。FBW 系统最先用于制导导弹,随后用于军用飞机。它在商用飞机上的应用延迟是由于需要时间开发适当的故障生存技术,以提供足够的安全性、可靠性和可用性。软件生成在高完整性数字 FBW 系统的总工程开发成本中占很大比例。本文讨论了与软件和冗余技术相关的问题。空客和波音等领先的商用飞机制造商都在其民用客机中采用 FBW 控制装置。本文介绍了他们的方法、控制理念的差异以及如何实现航空公司运营所必需的可比安全保障水平。 关键词 航空电子、软件工程、软件安全、容错 1. 简介 电传操纵 (FBW) 系统是一种基于计算机的飞行控制系统,它用更轻的电线取代了飞行员驾驶舱控制装置和移动表面之间的机械连接。飞行员通过控制飞机机翼和尾翼上的可移动部件(称为飞行控制面)来操纵飞机。计算机将飞行员的命令转换成传送到控制面的电脉冲。空客和波音在其商用飞机中使用 FBW 的方式略有不同。本文的目的是比较商用飞机制造商在实施其 FBW 系统时采用的不同方法。本文试图从系统和软件工程设计决策的角度来探讨系统的可用性和安全性。
警告 主飞行控制面和主飞行控制飞行员输入:俯仰轴、滚转轴、偏航轴 标记信标通道 每个导航接收器频率选择 手动无线电传输键控和 CVR/FDR 同步参考 自动驾驶仪/自动油门/AFCS 模式和接合状态* 选定的气压设置*:飞行员、副驾驶 选定的高度(所有飞行员可选择的操作模式)* 选定的速度(所有飞行员可选择的操作模式)* 选定的马赫(所有飞行员可选择的操作模式)* 选定的垂直速度(所有飞行员可选择的操作模式)* 选定的航向(所有飞行员可选择的操作模式)* 选定的飞行路径(所有飞行员可选择的操作模式)*:航向/DSTRK、路径角 选定的决断高* EFIS 显示格式*:飞行员、副驾驶 多功能/发动机/警报显示格式* GPWS/TAWS/GCAS 状态*:选择地形显示模式,包括弹出显示状态、地形警报、注意和警告以及建议、开/关开关位置 低压警告*:液压压力、气压 — 计算机故障* 客舱失压* TCAS/ACAS(交通警报和防撞系统/机载防撞系统)* 结冰探测* 发动机警告每台发动机振动* 发动机警告每台发动机超温* — 发动机警告每台发动机油压低* 发动机警告每台发动机超速* 风切变警告* 操作失速保护、摇杆器和推杆启动* 所有驾驶舱飞行控制输入力*:驾驶盘、驾驶杆、方向舵踏板驾驶舱输入力 垂直偏差*:ILS 下滑道、MLS 仰角、GNSS 进近航道 水平偏差*:ILS 航向道、MLS 方位角、GNSS 进近航道 DME 1 和 2 距离* 主导航系统参考*:GNSS、INS、VOR/DME、MLS、Loran C、 ILS 制动器*:左右制动压力、左右制动踏板位置 日期* 事件标记* 平视显示器正在使用* 辅助视觉显示开启*
2.确定 CS-FCD、CS-MMEL 和 CS-CCD 适用运行适用性要求的参考日期为 2011 年 12 月 31 日。3.原产国适航当局型号合格证数据表编号TCCA 型号合格证数据表编号A-236(初次修订 2015 年 12 月 17 日,或后续修订) 4.原产国适航当局认证依据 参考 TCCA 型号合格证数据表编号A-236。5.EASA 适航要求 EASA 认证规范 25,修订版 12。EASA 认证规范全天候运行 (CS-AWO),初始版本。5.1 特殊条件 B-01 结冰条件下的飞行 B-02 失速和预定运行速度 B-03 运动和驾驶舱控制的影响 B-04 静态方向、横向和纵向稳定性以及低能耗意识 B-05 B-14 飞行包线保护设计大角度进近 B-17 正常载荷系数限制系统 B-26 在符合条件的湿槽或 PFC 跑道上缩短着陆距离 C-02 复合材料油箱 – 未容纳的发动机碎片 C-06 设计俯冲速度 C-07 设计机动载荷 C-08 飞行员限制力和扭矩(侧杆) C-12 CFRP 油箱的轮胎碎片与燃油泄漏 C-13 自动刹车系统载荷 D-04 坠机后火灾 – 复合材料结构 D-07 座椅安装的热量释放和烟雾排放 D-08 飞行中火灾 – 复合材料和特殊结构 D-14 无牵引杆牵引 D-16 控制面位置感知和 EFCS E-01 水/冰燃料系统 E-11 CFPR 机翼油箱的耐火能力 F-01 HIRF 保护 F-10 单一欧洲天空的数据链服务 F-11 飞行记录器、数据链记录 F-14 飞行仪表外部探头 - 结冰条件下的鉴定 F-21 机载系统和网络安全 F-29 锂电池安装 F-32 不可充电锂电池安装
在电传操纵飞机上,飞行控制是根据复杂的控制法则和逻辑实施的。通常在传统飞机上进行的操纵品质认证测试,以证明符合 CS 25 SUBPART B – FLIGHT,但这些测试不足以涵盖在服务中可能遇到的所有可预见情况下的飞行控制法则行为。为了标准化操纵品质测试,EASA 认为,需要在认证文件中明确提出和正式化符合 CS 25.143、25.1301 和 25.1309 中关于飞行控制法则特性的方法,以确保并记录对控制法则、逻辑和特性的充分覆盖和测试。因此,您可能需要请求解释性材料来提高合规性演示的正式化水平。关于失衡特性,数字飞行控制系统不允许飞机处于 CS 25.255(a) 所要求的失衡状态,因此无法证明直接合规性。但是,CS.25.255 的其他要求仍然适用。EASA 可能要求申请人详细说明如何遵守所有适用的 CS 25.255 要求,并提供 DFCS 设计和操作的详细说明,以支持预期的合规性证明。申请人还应详细说明在正常和超速区域进行任何飞行测试的提案。定义配备电子飞行控制系统的飞机的(俯仰、偏航、滚转)设计机动要求,其中控制面的运动与驾驶舱控制装置的运动没有直接关系。这可能基于 CS-25 Am 中采用的相关监管材料。13.存在与带有电子飞行控制/电传操纵系统的飞机相关的认证问题。该主题还涵盖飞行员控制(例如侧杆控制器、方向舵踏板)和操作测试合规性、电子飞行控制系统故障、控制信号完整性、控制面位置感知、控制权限限制、共模故障和错误考虑、飞行控制法则验证和模式通告。可能需要 CRI(包括特殊条件)。
摘要 本文介绍了 FLEXOP H2020 EU 项目框架内无人驾驶实验飞机减速板的建模、系统识别、仿真和飞行测试。由于飞机配备了响应缓慢的喷气发动机,因此在加速飞机进行颤振测试后,需要使用减速板来增加减速,以便保持在当局批准的有限空域内进行飞行测试。减速板由伺服电机、开启机构和减速板控制面本身组成。在简要介绍了演示飞机、减速板设计和实验测试台后,本文参考了以前的工作,对建模和系统识别进行了深入描述。系统识别包括确定高度非线性(饱和和负载相关)伺服执行器动力学以及非线性气动和机械特性,包括刚度和惯性效应。相对于之前的工作,新的贡献是考虑了负载打开或关闭的统一伺服角速度极限模型,考虑了整个偏转和飞机空速范围的减速板法向力和阻力模型的详细构建和评估,提出了统一的气动-机械非线性模型,给出了减速板角度、动态压力和伺服扭矩之间的直接关系,以及基于传递函数的机构刚度和惯性效应建模。确定的伺服动力学模型包括系统延迟、内部饱和、前面提到的负载相关角速度极限模型和传递函数模型。基于考虑减速板整个开启角度和动态负载范围的试验台测量验证了伺服模型。还考虑了新的、未发表的测量结果,其中伺服负载随着伺服移动而逐渐增加,以在更现实的情况下验证模型。然后构建完整的减速板模型并在模拟中测试以检查实际行为。下一步,通过在软件在环 (SIL) Matlab 仿真中使用飞机的基线控制器飞行模拟测试轨迹,对集成到 FLEXOP 飞机非线性仿真模型中的减速板模型进行测试。首先,将独立的减速板仿真与 SIL 结果进行比较,以验证减速板模型与非线性飞机仿真的完美集成。最后,使用实际飞行数据来验证和更新减速板模型并显示减速板的有效性。然后比较有和没有空气制动器的减速时间,强调空气制动器在测试任务中的实用性。
EADS CASA 的军用运输机部门 (MTAD) 在先进飞机结构的设计和制造方面拥有丰富的经验。这包括碳纤维和金属结构,以及自动化流程(制造和组装)方面的经验。目前,该部门为一系列航空项目开发或生产飞机结构:水平稳定器(A400M、Falcon 7X)、飞行控制面(B-777、B-737、Falcon 7X、A400M、欧洲战斗机)、发动机短舱、纤维铺放技术风扇罩(A340-500/600、A380、A318)、金属结构(A380 机腹整流罩、A318 风扇罩、A320 第 18 部分、A330/340 中央箱等)、前缘(空客)等。MTAD 正在生产旨在满足世界各国空军对加油机/运输机的不同需求的解决方案。 MTAD 已经认识到任务要求的广泛性,并基于两个空中客车平台提供定制解决方案:久经考验的 A310-300 和 A330-200。MTAD 有能力设计、制造、认证和销售整机。它拥有成功的轻型和中型军用运输机系列,如 C-212(销售超过 400 架)、CN-235(销售超过 300 架)和 C-295(销售超过 60 架)。这些产品是对 EADS 其他产品组合的补充,也是在塞维利亚的 EADS CASA 工厂建立重型军用运输机 A400M 总装线的原因。鉴于其在 A330 MRTT 和 A400M 认证过程中的飞机结构测试责任,MTAD 与 Alava Ingenieros 和 LMS International 合作,更新了用于地面振动测试 (GVT) 的测量硬件和软件。新系统已部署,测试团队也接受了在 EADS CASA 的 A310 加油杆演示飞机上进行演示 GVT 的培训。除了这次测试的结果,我们还展示了在 A330 MRTT 上进行认证测试的附加结果。EADS CASA 的 A310 加油杆演示飞机于 2007 年 1 月 30 日完成了第 12 次试飞,加油杆首次成功展开(图 1a)。2006 年 3 月 30 日,经过 3 年的开发,ARBS(空中加油杆系统)飞行测试项目的第一阶段成功完成,EADS CASA 完成了新一代加油杆的设计和制造。飞行测试项目旨在证明安装在空客平台上的新型加油杆的性能,例如,它包括打开加油机的工作范围或与 F-16 进行干/湿接触。这些测试的初步结果表明:飞机平台和吊杆结构没有任何形式的颤振
本文介绍了创新型遥控 ETF 飞艇 1 的技术演示器的地面测试。测试活动旨在验证 ETF 的飞行控制系统,该系统基于推力矢量技术,与飞艇结构一起代表了 ETF 设计的一项重大创新。都灵理工学院航空航天系的一个研究小组与意大利一家小型私营公司 Nautilus 合作,几年来一直致力于 ETF (Elettra Twin Flyers) 的研究。这艘飞艇是遥控飞艇,具有高机动能力和良好的操作特性,即使在恶劣的大气条件下 2 。Nautilus 新概念飞艇具有结构和适当的指挥系统,使飞行器能够在正常和强风条件下进行向前、向后和侧向飞行以及以任何航向悬停。为了实现这些功能,ETF 演示器 3 采用了非常规的架构,该架构基于双船体,带有中央平面外壳结构、螺旋桨、机载电气系统和有效载荷(图 1)。作为主要指挥系统,气动控制面被六个螺旋桨取代,这些螺旋桨由电动机驱动,可在整个飞行范围内控制和操纵飞艇。本文分析了初步测试运行的结果,并将功率需求与专为 ETF 演示器 4 开发的燃料电池系统的性能进行了比较。I 简介 低成本多用途多任务平台 Elettra-Twin-Flyers (ETF) 正在由 Nautilus S.p.A 和都灵理工大学 [1] 合作开发。这是一种非常创新的遥控飞艇,配备了高精度传感器和电信设备。由于其独特的特点,它特别适合内陆、边境和海上监视任务以及电信覆盖范围扩展,特别是在那些无法进入或没有传统机场设施且环境影响是主要关注点的地区。ETF 的特点是机动性强,风敏感度低 [2]。飞行条件包括前向、后向、侧向飞行和悬停,无论是在正常风况下还是在强风条件下。为了实现这些能力,ETF 采用了高度非传统的架构。设计的关键点是创新的指挥系统,它完全基于由电动机驱动的推力矢量螺旋桨,由氢燃料电池供电。ETF 概念来自监视和监控目的。该飞艇设计具有很强的机动性,可以满足高水平的任务要求,可以操作高度专业化的仪器,例如轻型合成孔径雷达 (SAR) 系统或电光 (EO) 红外摄像机或高光谱传感器。为了满足平均监视要求,该系统的最低续航时间为 48 小时,可延长至 72 小时,高度操作范围为 500 至 1500 米。
EADS CASA 的军用运输飞机部门 (MTAD) 在先进航空结构的设计和制造方面拥有丰富的经验。这包括碳纤维和金属结构,以及自动化流程(制造和组装)方面的经验。目前,该公司为一系列航空项目开发或生产飞机结构:水平稳定器(A400M、Falcon 7X)、飞行控制面(B-777、B-737、Falcon 7X、A400M、欧洲战斗机)、发动机短舱、纤维铺放技术风扇罩(A340-500/600、A380、A318)、金属结构(A380 机腹整流罩、A318 风扇罩、A320 第 18 部分、A330/340 中央箱等)、前缘(空客)等。MTAD 正在生产旨在满足世界各国空军对加油机/运输机不同需求的解决方案。MTAD 已经认识到广泛的任务需求,并基于两个空客平台提供定制解决方案:久经考验的 A310-300 和 A330-200。MTAD 有能力设计、制造、认证和销售整机。它拥有成功的轻型和中型军用运输机系列,如 C-212(销售超过 400 架)、CN-235(销售超过 300 架)和 C-295(销售超过 60 架)。这些产品是对 EADS 其他产品组合的补充,这也是在塞维利亚的 EADS CASA 工厂建立重型军用运输机 A400M 总装线的原因。鉴于其在 A330 MRTT 和 A400M 认证过程中的飞机结构测试责任,MTAD 与 Alava Ingenieros 和 LMS International 合作,更新了用于地面振动测试 (GVT) 的测量硬件和软件。新系统已部署,测试团队接受了 EADS CASA 的 A310 吊杆演示飞机上演示 GVT 的培训。除了本次测试的结果外,我们还展示了 A330 MRTT 认证测试的其他结果。EADS CASA 的 A310 吊杆演示飞机于 2007 年 1 月 30 日完成了第 12 次试飞,吊杆首次成功展开(图 1a)。2006年3月30日,经过3年的研发,ARBS(空中加油吊杆系统)飞行测试项目第一阶段顺利完成,EADS CASA完成了这一新一代加油吊杆的设计和制造。飞行测试项目旨在验证安装在空中客车平台上的新型吊杆的性能,其中包括打开加油机的工作范围或与F-16进行干/湿接触等。这些测试的初步结果表明:飞机平台和吊杆结构没有任何形式的颤振