在本研究中,首先开发了 F-16 飞机全动力学的详细非线性模型,并用 MATLAB 进行编码。该模型包括重力模型、可变大气参数、表格气动函数、推进模型、非线性控制面驱动模型和六自由度运动方程。然后开发了一种使用上述模型计算所有可能配平值的数值工具。该工具可以计算不同操作点的配平值。在开发的算法中,使用了粒子群优化 (PSO) 方法,这是一种在连续搜索空间上具有高收敛速度的元启发式方法。然后使用开发的模型围绕计算出的配平值进行模拟。模拟结果证实,基于 PSO 的配平算法可以高精度地找到所有配平值。
1. 引言 自从飞行开始以来,飞机控制一直是航空业确保安全飞行的首要任务之一。就像人体一样,飞机的每个部件都在确保安全飞行和控制方面发挥着作用。航空运输无疑是近代最安全的交通方式之一。然而,有时确实会发生造成大量人员伤亡的事故或事件。机械故障或飞机部件损坏是继飞行员失误之后导致飞机失事的第二大常见原因,约占所有航空事故的 22% [1]。其他事故原因还包括破坏、失控 (LOC)、天气和其他人为因素。在早期,飞行控制系统是机械的,这意味着飞行员在驾驶舱的控制与控制面之间存在直接联系。多年来,机械飞行控制系统已被允许飞行员直接控制飞机运动的系统所取代。这种数字类型的飞行控制系统使用电信号,被称为“电传操纵”。这种飞行控制系统提高了飞机的稳定性和控制力,也提高了飞行员对飞行干扰的反应时间 [2]。此外,在飞机遇到任何类型的系统故障的情况下,它都会变得不对称,飞行员的工作量会大大增加。浮动配平片、发动机风扇爆裂、鸟撞和控制器冻结都是可能限制飞机控制的一些故障示例。尽管如此,在大多数情况下,当发生这些类型的故障时,只有控制面受到影响,而升力面保持完好。苏城 DC-10 坠机事件就是这种情况的一个非常著名的例子。联合航空 232 航班从丹佛飞往芝加哥时,第二台发动机发生故障,导致所有液压控制装置失效。飞机随后由剩下的两台发动机控制,并在爱荷华州苏城坠毁。共有 111 人伤亡,但 185 人幸存 [3]。这清楚地表明了飞机在没有标准控制面的情况下也能被控制的能力。 2003 年,DHL 的空客 A300B4 左翼遭到地对空导弹袭击。
I. 简介 HIS 论文是北大西洋公约组织 (NATO) 牵头的研究系列论文之一,该系列论文探索了计算流体力学 (CFD) 方法在稳定性和控制分析方面的能力。本文介绍了一种通用无人作战飞机 (UCAV) 配置的动态风洞试验。在后续出版物中,我们将把 CFD 预测与这些实验测量结果进行比较。北约科学技术组织 (STO) 应用车辆技术 (AVT) 任务组 201 以前身任务组 AVT-161 1-9 的研究工作为基础。AVT-201 的另一个重点是预测偏转控制面效应。本文介绍了从一系列具有多个后缘控制面的通用 UCAV 配置的风洞试验中获得的受迫振荡实验数据。我们还收集了一组补充静态数据,并在参考文献 10 中报告。
1979 年 8 月 16 日,新西兰航空 CT-4 空中教练机 A19-028 在昆士兰州奥基坠毁,两名机组人员遇难。通过检查地面撞击标记,确定飞机在首次发生地面撞击时以 250 度俯冲,右舷倾斜 10 英尺。这次撞击之后,飞机弹起,并在第二次重击中停下来。对残骸进行彻底检查后,未发现任何坠机前缺陷的证据,地面撞击时所有控制面和控制运行都完好无损,结论是飞机飞入地面是因为飞行员没有注意飞行路线。尽管驾驶舱结构相对完好无损,如图58 所示,但由于经历了巨大的垂直加速度,这次事故被认为是无法幸存的。
本文介绍了一种利用自动化工具在概念设计过程早期考虑机翼结构刚度和气动弹性的方法。由于机翼非结构质量(如燃油负荷和控制面)的不确定性和可变性很高,因此在概念设计过程中,可以用随机模型很好地表示刚度和气动弹性。为了实现这一点,我们改进了现有的设计工具,利用基于规则的自动化设计从特定的机翼外模线生成机翼扭矩盒几何形状。对挠度和推断刚度的简单分析表明,早期概念设计选择会极大地影响结构刚度。本文讨论了设计选择的影响以及屈曲约束如何在特定示例中驱动结构重量。本文为模型的进一步研究做准备,包括有限元模型 (FEM),以分析用于气动弹性分析的所得模态形状和频率。
摘要:本文介绍了模块化铁鸟新概念的控制架构和控制规律,旨在重现飞行载荷,以测试中小型飞机和无人机的移动式气动控制面执行器。铁鸟控制系统必须保证反作用力的驱动。一方面,液压执行器模拟飞行过程中由于气动和惯性效应而作用于移动表面的铰链力矩;另一方面,待测试的执行器施加主动铰链力矩来控制同一表面的角位置。参考气动和惯性载荷由飞行模拟模块生成,以重现操作过程中出现的更真实的情况。控制动作的设计基于用于产生载荷的液压装置的动态模型。该系统使用比例积分微分控制算法进行控制,该算法通过优化算法进行调整,同时考虑了被测执行器的闭环动力学、受控装置的不确定性和干扰。通过数值模拟证明了所提出的架构和控制规律的有效性。
飞行前检查:每次飞行前,请检查模型的所有工作系统是否正常运行,并确保进行范围检查。首次飞行任何新型模型飞机时,我们强烈建议您寻求经验丰富的模型师的帮助,以帮助您检查模型并在飞行过程中提供建议。他应该能够发现潜在的弱点和错误。务必保持推荐的 CG 位置和控制面行程。如果需要调整,请在操作模型之前进行调整。请注意您使用其他制造商的产品来飞行此特定飞机的任何说明和警告,尤其是发动机和无线电设备。请不要忽略我们的警告或其他制造商提供的警告。它们指的是如果忽略可能会导致永久性损坏或致命伤害的事物和过程。
电传操纵系统通常用于军用战斗机,以提高飞机的机动性。更准确地说,电传操纵系统使不稳定的机身能够提供更大的机动性。这种飞机需要计算机以足够快的速度进行调整,以抵消机身的自然不稳定性并保持飞机的可飞行性。在运输飞机中,电传操纵系统用于提高燃油效率、乘坐舒适度和安全性。这些飞机通常在控制系统失灵的情况下仍可飞行,但有些飞机需要备用系统来提供飞行员控制装置与飞机控制面之间的连接,以实现与传统飞机类似的直接控制。在航天飞机中,电传操纵系统使航天器保持在正确的飞行轨迹内,使其能够到达预定目标而不会超出任何飞行器限制。
电传操纵系统通常用于军用战斗机,以提高飞机的机动性。更准确地说,电传操纵系统使不稳定的机身能够提供更大的机动性。这种飞机需要计算机以足够快的速度进行调整,以抵消机身的自然不稳定性并保持飞机的可飞行性。在运输飞机中,电传操纵系统用于提高燃油效率、乘坐舒适度和安全性。这些飞机通常在控制系统失灵的情况下仍可飞行,但有些飞机需要备用系统来提供飞行员控制装置与飞机控制面之间的连接,以实现与传统飞机类似的直接控制。在航天飞机中,电传操纵系统使航天器保持在正确的飞行轨迹内,使其能够到达预定目标而不会超出任何飞行器限制。
电传操纵系统通常用于军用战斗机,以提高飞机的机动性。更准确地说,电传操纵系统使不稳定的机身能够提供更大的机动性。这种飞机需要计算机以足够快的速度进行调整,以抵消机身的自然不稳定性并保持飞机的可飞行性。在运输飞机中,电传操纵系统用于提高燃油效率、乘坐舒适度和安全性。这些飞机通常在控制系统失灵的情况下仍可飞行,但有些飞机需要备用系统来提供飞行员控制装置与飞机控制面之间的连接,以实现与传统飞机类似的直接控制。在航天飞机中,电传操纵系统使航天器保持在正确的飞行轨迹内,使其能够到达预定目标而不会超出任何飞行器限制。