所有类型航空的进步都依赖于为飞行员提供足够的信息,使他或她能够安全控制飞机并将其导航到目的地。自 1903 年起,速度、航程、高度和多功能性的每一次进步都必须有相应的仪器,以使机组人员能够最大限度地发挥飞机的潜力。一开始,即 1903 年的莱特“飞行者”,仪器很简陋,仅包括一个测量空速的风速计、一个秒表和一个发动机转速计数器。也许系在飞行员前方鸭翼结构上的一根绳子也可以归类为一种仪器,用于指示飞机相对于气流的姿态。有限的仪器是重于空气的动力飞行第一个十年的飞机的一个特点。然而,战时飞行的需求加速了仪器的发展,1918 年,典型的驾驶舱将配备空速指示器、高度计、倾角计、燃油压力表、油压指示器、转速指示器、指南针和时钟。直到 20 世纪 20 年代末,才有仪器可供飞行员在云层中飞行或地平线模糊时保持姿态和航向。在 20 世纪 30 年代和 40 年代,“盲飞”仪器取得了长足的进步。20 世纪 50 年代出现了“指挥仪”式姿态指示器,60 年代出现了越来越多的机电仪器。到 1970 年,固体 -
1. 简介。轨迹跟踪是飞行控制系统的一项基本任务。在这一任务中,确保所采用的方法准确,特别是对干扰具有鲁棒性至关重要。这对于飞行的关键阶段(例如进近和着陆)尤其重要,因为飞行在拥挤的空域和近地飞行。在这些阶段,干扰引起的偏离参考轨迹可能会导致灾难性的后果。因此,风是飞行系统最危险的干扰之一,因为它不可预测,对飞机动力学影响很大。考虑到上述飞行条件下控制任务的关键性,迄今为止已经研究了几种用于此应用的方法。在 [19] 中,作者提出了一种 gamma/theta 制导律,用于跟踪已知风场的最优控制方法得出的轨迹。作者在垂直平面上制定了问题,并使用起飞阶段的数值示例说明了所开发的方法。 [15] 中的研究提出了一种自适应控制方案,利用该思想控制飞机在起飞阶段的爬升率。该反馈控制律不需要事先了解风场。[4] 中的作者将非线性空间反演方法应用于飞机轨迹跟踪。开发了一种新的垂直平面制导方案,与传统的基于非线性动态反演的方法相比,其跟踪性能有所提高。与 [19] 类似,需要对现有的风扰动进行先验估计。着陆飞行阶段被视为二维跟踪
1,2 航空电子系,JNTUK 卡基纳达科学技术学院 摘要:深入了解自动飞行控制系统的知识可以理解控制飞机飞行的基本问题,并提高其评估通常提出的问题的解决方案的能力。许多飞行任务都要求飞机非常精确地遵循某些专门定义的路径。每当需要控制一架传统飞机时,飞行员可以指挥三个轴中任意一个或所有轴的旋转速度:俯仰、滚转和偏航。在飞行控制处理中考虑对路径变量的控制时,需要测量飞机的航向和气压高度等路径变量。这些近似值是线性的,也是充分的;这类系统可被视为飞行路径控制系统类的成员,本文对此进行了深入讨论。本文以时域方法为基础,介绍了现代控制理论方法,特别是状态方程的使用,这是一种自然有效的技术,与飞机动力学的数学描述相协调,而飞机动力学可以用状态和输出方程最完整、最方便地表达。本文还涉及 AFCS 的特定模式,涉及在不同飞行条件下为参考飞机 CHARLIE(一种非常大的四引擎喷气式客机)实施的飞行路径控制系统。SIMULINK 用于实施飞行路径控制系统,因为它们对于形成集成 AFCS 的最外层循环非常重要。关键词:飞机动力学、自动飞行控制系统 (AFCS)、飞行路径控制系统 (FPCS)
先进自动化系统 (FAA):20 世纪 90 年代为美国国家空域的空中交通管制和管理而实施的硬件、软件和程序组合。飞机的缩写。ARINC 通信和地址报告系统。姿态指示器:陀螺仪飞机姿态显示器,也称为人工地平仪。另请参阅 EADI。自动相关监视:指定期向地面控制站自动报告飞机位置、高度和其他数据。自动航路空中交通管制,FAA 的先进 ATC 系统概念。航路和终端自动化之间的界限不再那么明确,该术语的使用正在减少;另请参阅 AAS、FAS。自动飞行服务站:一种交互式自动化设施,可向通用航空和其他飞行员提供与飞行相关的信息。另请参阅 FSS。人工智能。航空公司飞行员协会,航空公司飞行员的劳工组织。 (ALT-STAR):飞行管理系统的高度获取模式,在此模式下,飞机被命令爬升到预先选定的高度并保持水平。辅助动力装置,一种小型涡轮机,提供电力、压缩空气和飞机液压系统的动力源。航空法规咨询委员会,由联邦航空管理局设立,以确保用户对监管过程的意见。航空无线电公司为航空公司和其他用户提供国际和国内数据传输、接收和转发服务。空中交通管制中心(美国):提供空中交通的航路战术管制。飞机系统控制器:控制飞机子系统(麦克唐纳-道格拉斯 MD-11)运行的计算机。飞机状况显示器,美国交通管理的一个信息元素
先进自动化系统 (FAA):20 世纪 90 年代为美国国家空域的空中交通管制和管理而实施的硬件、软件和程序组合。飞机的缩写。ARINC 通信和地址报告系统。姿态指示器:陀螺仪飞机姿态显示器,也称为人工地平仪。另请参阅 EADI。自动相关监视:指定期向地面控制站自动报告飞机位置、高度和其他数据。自动航路空中交通管制,FAA 的先进 ATC 系统概念。航路和终端自动化之间的界限不再那么明确,该术语的使用正在减少;另请参阅 AAS、FAS。自动飞行服务站:一种交互式自动化设施,可向通用航空和其他飞行员提供与飞行相关的信息。另请参阅 FSS。人工智能。航空公司飞行员协会,航空公司飞行员的劳工组织。 (ALT-STAR):飞行管理系统的高度获取模式,在此模式下,飞机被命令爬升到预先选定的高度并保持水平。辅助动力装置,一种小型涡轮机,提供电力、压缩空气和飞机液压系统的动力源。航空法规咨询委员会,由联邦航空管理局设立,以确保用户对监管过程的意见。航空无线电公司为航空公司和其他用户提供国际和国内数据传输、接收和转发服务。空中交通管制中心(美国):提供空中交通的航路战术管制。飞机系统控制器:控制飞机子系统(麦克唐纳-道格拉斯 MD-11)运行的计算机。飞机状况显示器,美国交通管理的一个信息元素
先进自动化系统 (FAA):20 世纪 90 年代为美国国家空域的空中交通管制和管理而实施的硬件、软件和程序组合。飞机的缩写。ARINC 通信和地址报告系统。姿态指示器:陀螺仪飞机姿态显示器,也称为人工地平仪。另请参阅 EADI。自动相关监视:指定期向地面控制站自动报告飞机位置、高度和其他数据。自动航路空中交通管制,FAA 的先进 ATC 系统概念。航路和终端自动化之间的界限不再那么明确,该术语的使用正在减少;另请参阅 AAS、FAS。自动飞行服务站:一种交互式自动化设施,可向通用航空和其他飞行员提供与飞行相关的信息。另请参阅 FSS。人工智能。航空公司飞行员协会,航空公司飞行员的劳工组织。 (ALT-STAR):飞行管理系统的高度获取模式,在此模式下,飞机被命令爬升到预先选定的高度并保持水平。辅助动力装置,一种小型涡轮机,提供电力、压缩空气和飞机液压系统的动力源。航空法规咨询委员会,由联邦航空管理局设立,以确保用户对监管过程的意见。航空无线电公司为航空公司和其他用户提供国际和国内数据传输、接收和转发服务。空中交通管制中心(美国):提供空中交通的航路战术管制。飞机系统控制器:控制飞机子系统(麦克唐纳-道格拉斯 MD-11)运行的计算机。飞机状况显示器,美国交通管理的一个信息元素
先进自动化系统 (FAA):20 世纪 90 年代为美国国家空域的空中交通管制和管理而实施的硬件、软件和程序组合。飞机的缩写。ARINC 通信和地址报告系统。姿态指示器:陀螺仪飞机姿态显示器,也称为人工地平仪。另请参阅 EADI。自动相关监视:指定期向地面控制站自动报告飞机位置、高度和其他数据。自动航路空中交通管制,FAA 的先进 ATC 系统概念。航路和终端自动化之间的界限不再那么明确,该术语的使用正在减少;另请参阅 AAS、FAS。自动飞行服务站:一种交互式自动化设施,可向通用航空和其他飞行员提供与飞行相关的信息。另请参阅 FSS。人工智能。航空公司飞行员协会,航空公司飞行员的劳工组织。 (ALT-STAR):飞行管理系统的高度获取模式,在此模式下,飞机被命令爬升到预先选定的高度并保持水平。辅助动力装置,一种小型涡轮机,提供电力、压缩空气和飞机液压系统的动力源。航空法规咨询委员会,由联邦航空管理局设立,以确保用户对监管过程的意见。航空无线电公司为航空公司和其他用户提供国际和国内数据传输、接收和转发服务。空中交通管制中心(美国):提供空中交通的航路战术管制。飞机系统控制器:控制飞机子系统(麦克唐纳-道格拉斯 MD-11)运行的计算机。飞机状况显示器,美国交通管理的一个信息元素
确保电传操纵系统安全性的方法:空客 VS 波音 Andrew J. Kornecki、Kimberley Hall 安柏瑞德航空大学 美国佛罗里达州代托纳比奇 < kornecka@erau.edu > 摘要 电传操纵 (FBW) 是一种飞行控制系统,使用计算机和相对较轻的电线来取代飞行员驾驶舱控制装置和移动表面之间的传统直接机械连接。FBW 系统已用于制导导弹,随后用于军用飞机。商用飞机实施延迟是由于需要时间开发适当的故障生存技术,以提供足够的安全性、可靠性和可用性。软件生成对高完整性数字 FBW 系统的总工程开发成本贡献很大。讨论了与软件和冗余技术相关的问题。空中客车和波音等领先的商用飞机制造商在其民用客机中采用了 FBW 控制。本文介绍了他们的方法、控制理念的差异以及实现航空公司运营所必需的同等安全保障水平的实施情况。关键词 航空电子、软件工程、软件安全、容错 1.简介 电传操纵 (FBW) 系统是一种基于计算机的飞行控制系统,它用更轻的电线取代了飞行员驾驶舱控制装置和移动表面之间的机械连接。飞行员通过控制飞机机翼和尾翼上的可移动部件(称为飞行控制面)来操纵飞机。计算机将飞行员的命令转换为传送到控制面的电脉冲。空中客车和波音在其商用飞机中利用 FBW 的方式略有不同。本文的目的是比较商用飞机制造商在实施 FBW 系统时使用的不同方法。本文试图从系统和软件工程设计决策的角度来探讨系统的可用性和安全性。
本系列涵盖支持飞机运行的机组人员职位。主要涵盖武装部队预备役组织中的民用技术员职位。除了作为预备役成员外,这些技术员还在其特定单位担任全职民用职位。本系列涵盖的职位主要履行其特定机组人员专业的职责,以支持单位飞行任务。本系列还包括负责为机组人员提供地面和飞行指导的职位,因为此类职位的职业关系属于飞机操作领域,并且他们的主要资格要求是特定机组专业的经验和培训。飞行工程师协助飞行前规划,包括检查和检查飞机系统,并通过在整个飞行过程中监控发动机和飞机系统的运行、控制飞机环境系统和执行相关飞行任务为飞行员提供支持。这些职位要求了解飞机电气、机械、推进和液压系统的工作原理和特性,并具备分析性能、检测和诊断故障以及采取纠正措施的技能。空中加油技术人员主要负责控制和操作加油机上的空中加油系统。他们计划和指挥飞机的装载,计算重量和平衡系数,指挥受油飞机就位,控制加油操作,并采取紧急措施避免危险情况。这些职位要求了解飞行中加油系统、在不同条件下为各种飞机加油的技术和程序以及适用的紧急程序。飞机装载长主要负责根据飞机重量和平衡系数、所涉货物的性质、飞行行程、安全考虑和紧急抛弃计划,计划和指挥运输飞机上的货物装载、定位和固定。他们还可能参与规划和准备飞机进行空投货物,并且
确保电传操纵系统安全性的方法:空客 VS 波音 Andrew J. Kornecki、Kimberley Hall 安柏瑞德航空大学 美国佛罗里达州代托纳比奇 < kornecka@erau.edu > 摘要 电传操纵 (FBW) 是一种飞行控制系统,它使用计算机和相对较轻的电线取代飞行员驾驶舱控制装置和移动表面之间的传统直接机械连接。FBW 系统最先用于制导导弹,随后用于军用飞机。它在商用飞机上的应用延迟是由于需要时间开发适当的故障生存技术,以提供足够的安全性、可靠性和可用性。软件生成在高完整性数字 FBW 系统的总工程开发成本中占很大比例。本文讨论了与软件和冗余技术相关的问题。空客和波音等领先的商用飞机制造商都在其民用客机中采用 FBW 控制装置。本文介绍了他们的方法、控制理念的差异以及如何实现航空公司运营所必需的可比安全保障水平。 关键词 航空电子、软件工程、软件安全、容错 1. 简介 电传操纵 (FBW) 系统是一种基于计算机的飞行控制系统,它用更轻的电线取代了飞行员驾驶舱控制装置和移动表面之间的机械连接。飞行员通过控制飞机机翼和尾翼上的可移动部件(称为飞行控制面)来操纵飞机。计算机将飞行员的命令转换成传送到控制面的电脉冲。空客和波音在其商用飞机中使用 FBW 的方式略有不同。本文的目的是比较商用飞机制造商在实施其 FBW 系统时采用的不同方法。本文试图从系统和软件工程设计决策的角度来探讨系统的可用性和安全性。