推力矢量构成喷嘴优化和增加功能的下一步。喷嘴用于将射流引导到发动机轴以外的方向上,以产生飞机重心周围的横向力和矩,可用于飞机操纵。在二维螺距中只有喷嘴可以在垂直平面内偏转,因此喷嘴补充了水平控制表面。有几种类型的推力向量喷嘴。例如,有2-D和3-D推力向量的喷嘴。ITP喷嘴是3-D矢量喷嘴。也,达到气射流偏转的方法有不同的方法:最有效的方法是仅机械偏转截面,从而最大程度地减少对喉咙上游(Sonic)部分的影响。取决于此不同部分的控制水平,con-di喷嘴可以是两种类型:
I. 引言随着火星立方体一号 (MarCO) 任务的成功和小型化技术的进步,小型卫星不再局限于在低地球轨道 (LEO) 运行。相反,通过低推力小型卫星进行深空探索、技术演示和有针对性的科学任务可能很快就会成为现实。事实上,即将到来的任务,如月球冰立方、LunaH-map 和 NEA Scout,将把小型卫星作为次要有效载荷搭载在 Artemis 1 上,部署到多体重力环境内的各种位置[1-3]。然而,混沌多体系统中航天器的轨迹和机动设计本质上是一个高维问题,而且由于结合了与低推力小型卫星相关的约束而变得更加复杂:有限的推进能力、运行调度约束以及固定但不确定的初始条件。虽然存在多种基于最优控制和动态系统理论 (DST) 的数值方法,用于在多体系统的近似动力学模型中构建低推力轨迹和机动剖面,但自主和稳健设计策略的开发需要一种替代方法。强化学习 (RL) 是天体动力学界越来越感兴趣的一类用于实现轨迹和机动设计的自主性的算法。RL 算法通常涉及代理与环境交互,通过对动态状态采取行动来最大化奖励函数。代理会探索环境,直到确定了决定每个状态下最佳动作的策略。如果制定得当,这些算法可以探索许多状态-动作对以确定最佳动作,同时限制对次优动作的探索。RL 方法已用于天体动力学中各种应用和动力学模型的轨迹和机动设计。例如,Dachwald 探索使用人工神经网络和进化算法设计配备低推力航天器到水星的转移 [ 4 ]。Das-Stuart、Howell 和 Folta 近期提出的方法利用 RL 和基本动力学结构来设计圆形限制三体问题 (CR3BP) 中周期轨道之间的复杂转移轨迹 [ 5 ]。此外,Scorsoglio、Furfaro、Linares 和 Massari 还使用演员-评论家深度强化学习 (DRL) 方法来开发地月空间近直线轨道航天器的对接机动 [ 6 ]。最近,Miller 和 Linares 应用著名的近端策略优化 (PPO) 算法来设计地月系统中遥远逆行轨道之间的转移,通过 CR3BP 进行建模 [ 7 ]。这些研究的成功为天体动力学界继续探索和扩展 RL 在多体轨迹设计策略中的应用奠定了宝贵的基础。具体来说,本文以这些先前的研究为基础,重点关注实施基于 RL 的轨迹设计方法的一个重要组成部分:制定一个奖励函数,该函数既反映了设计目标,也反映了影响恢复机动轮廓操作可行性的约束。该分析是在低推力 SmallSat 的轨迹设计背景下进行的,以快速访问位于与 CR3BP 中的周期轨道相关的稳定流形上的附近参考轨迹。
• 转向性能,包括符合 AVTP 03-30 的墙到墙 (WTW) 转弯半径、符合 SAE J266 和 SAE J2181 的稳态转弯 (SSC) 以及基于 AVTP 03-160W 的双车道变换 (DLC)(铺装路面和非铺装路面)
油润滑流体动力推力轴承依靠吸入汇聚空间的大量润滑剂供应,从而产生承载载荷的油膜。在许多情况下,通过将轴承的工作面浸入油中来保证润滑剂的供应。这种通常称为“淹没式”润滑的布置虽然对于较低的速度来说可以令人满意,但不太适合高速使用,因为它会导致轴承吸收大量能量。能量消耗来自两个来源:润滑膜剪切引起的必要摩擦损耗和推力环边缘在周围油中搅动引起的寄生损耗。搅动的影响在低速时并不明显,但在较高速度下(通常高于轴承平均节圆直径的 40 m/s),相关的能量损失迅速增加到等于甚至超过摩擦损耗。
我们将对推力偏转喷嘴进行研究,该喷嘴将在未来战斗机发动机中发挥作用,这些发动机需要高机动性,并且可能需要减小转向面积以确保隐身性能,所获得的结果将用于这将体现在战斗机的发展中,并将应用于未来无人机的发展。
2 事实信息 ................................................................................................................21 2.1 简介 ................................................................................................................21 2.2 格罗宁根事件 ........................................................................................................21 2.2.1 一般信息 ........................................................................................................21 2.2.2 格罗宁根的飞行准备 ......................................................................................21 2.2.3 飞行 ................................................................................................................23 2.2.4 飞行机组 ........................................................................................................23 2.2.5 飞机 ................................................................................................................24 2.2.6 气象信息 ........................................................................................................24 2.2.7 机场 ................................................................................................................24 2.3 里斯本事件 ........................................................................................................26 2.3.1 一般信息 ........................................................................................................26 2.3.2 里斯本的飞行准备 ........................................................................
摘要 导航波理论是一类对量子力学的现实主义解释,该理论推测量子力学形式主义的统计性质是由于人们忽略了潜在的更基本的真实动力学,微观粒子会像较大的经典物体一样随时间推移遵循真实轨迹。第一个导航波理论由德布罗意于 1923 年 [1] 提出,他提出粒子与伴随的导波场或导航波相互作用,这种相互作用引导粒子沿着与恒定相表面正交的轨迹运动。1952 年,玻姆 [2] 发表了导航波理论,其中导波等同于薛定谔方程的解,粒子的速度等同于概率量子速度。一组被归类为基于真空的导航波理论或随机电动力学 (SED) [3] 的模型探索了这样一种观点,即零点场、电磁真空涨落代表了亚量子领域随机性的自然来源,并为普朗克常数、卡西米尔效应、氢的基态等的起源提供了经典解释。虽然导航波或量子力学的现实主义解释并不是当今物理学的主流观点(该观点更倾向于哥本哈根解释),但在过去十年中,基于 Couder 和 Fort 开创的一些量子模拟实验工作,人们对导航波或量子力学的关注度又重新高涨 [4]。除了这些量子类似物之外,最近在实验室中可能还观察到了干涉仪中的玻姆轨迹 [5]。在量子真空等离子推进器 (Q-thruster) 支持物理模型的方法中,零点场 (ZPF) 以与基于真空的导波理论类似的方式扮演着导波的角色。具体来说,真空涨落(虚拟费米子和虚拟光子)充当引导真实粒子前进的动态介质。在本次演讲中,将详细开发一个物理模型,并讨论其在量子真空性质思想分类中的位置。将总结最近完成的真空测试活动的实验结果,该测试活动评估了在 1,937 兆赫 (MHz) 的 TM212 模式下激发的锥形 RF 测试物品的脉冲推力性能。然后将这次活动的经验数据与物理模型工具的预测进行比较。演讲将以讨论在推测的物理模型研究中正在进行的后续活动结束。关键词:导航波,量子真空,动态真空
推力矢量是一种新型控制技术概念。它是指发动机推力线的偏转,以提供俯仰、滚转或偏航控制力矩或直接升力。与传统的气动控制面相比,推力矢量控制对动压的依赖性较小,能够在大迎角和失速后飞行条件下提供控制力矩。因此,推力矢量技术已应用于多种军用战斗机,以提高其机动性。只有少数人研究过推力矢量在民用运输机上的应用。需要进行量化研究,以寻找在民用运输机上应用推力矢量控制的潜在好处。
虽然 AST 推力平衡器目前的状态已经超出了其设计目标,但它还有进一步改进的潜力,以实现更高的分辨率和更低的噪音。从我们的角度来看,机械结构似乎尚未达到极限。目前,AST 正在构建基于非常相似的机械设计的推力平衡器的新版本,它将具有改进的电子元件。目前,音圈致动器能够产生从 -1.8 N 到 1.8 N 范围内的力,固有分辨率为 16 位,通过插值技术略有增强。新版本的推力平衡器将使用分辨率更高的组件,因此在高达 1 N 的整个测量范围内表现出更好的性能。此外,还将开发一种专用于推力噪声测量的新型音圈电流源。它仅覆盖较小的推力范围,从而显着提高分辨率并降低此特定应用的噪音。在目前的状态下,推力平衡电子设备仅由标准型部件组成。在全新改进的电路设计的关键部分使用低噪声部件也有望显著降低整体本底噪声。作为一项附加功能,新型推力平衡器将配备第二个独立的现场校准装置,该装置基于物理原理而非音圈致动器。因此,这种新装置与现有的第二个音圈致动器相结合,将提供两种独立的现场校准方法,从而实现绝对推力测量的高精度。
自 1985 年以来,一项技术计划一直在进行,旨在开发用于航天器的耐高温氧化推进器。这项技术的成功开发将为设计性能更高、羽流污染更少的卫星发动机奠定基础。或者,这项技术计划将提供一种具有高热裕度的材料,使其能够在常规温度下运行,并延长可加燃料或可重复使用的航天器的使用寿命。新的腔室材料由铼基体组成,表面涂有铱以防氧化。这种材料将推进器的工作温度提高到 2200°C,比目前使用的硅化物涂层铌腔室的 1400°C 有显著提高。用铱涂层铼制造的 22 N 级空间保持发动机的稳态比冲比铌腔室高 20 到 25 秒。预计 Ir-Re 远地点 440 N 级发动机将额外提供 10 到 15 秒。这些改进的性能是通过减少或消除燃烧室内的燃油膜冷却要求,同时以与传统发动机相同的总混合比运行而实现的。该项目试图将飞行资格要求纳入其中,以降低飞行资格项目的潜在风险和成本。