摘要 本文将介绍韩国航空宇宙研究院经济实惠且环保的太空运输计划所采用的增材制造液体火箭发动机部件,并介绍推力室和其他部件的当前发展状况。已采用增材制造技术制造了多个推力室部件,即激光粉末床熔合 (L-PBF) 和粉末定向能量沉积 (p-DED),L-PBF 的材料为纯铜、Inconel718 和 CuCrZr,p-DED 的材料为铝青铜和 Inconel 625。并对制造的推力室进行了点火试验。用于 30 kN 推力液体火箭发动机的涡轮泵也正在设计和计划通过增材制造进行制造。此外,还评估和验证了增材制造对发动机喷嘴延伸、高压容器、热交换器和推力框架的可行性和适用性。
本文提出了使用硝酸铵(HAN)推进剂进行航天施用的燃烧室的初步研究。燃烧室由两个部分组成,即推力室和收敛性(C-D)喷嘴。燃烧室的设计非常重要,因为在此封闭体积中释放的推进剂中的化学能,即推力室并通过C-D喷嘴部分扩展。因此,必须设计腔室,以提供推进剂反应和释放最大可用能量的必要空间,并且还应防止以热的形式损失能量。应最佳设计C-D喷嘴,以允许将焓的最大转化为动能。因此,推力室和C-D喷嘴以最佳尺寸设计,用于释放热量,以将HAN推进剂的燃烧转换为基于HAN的单核粉推进器的排气速度。在这项工作中,燃烧室,即推力室和C-D喷嘴在16 bar的压力下设计,以产生11 N的推力。进行了11 N分析以显示以11 N推力的燃烧室的压力和温度变化,用于航天器的16 bar的16 bar压力和腔室压力。从分析结果中发现,han+甲醇+硝酸铵+水的推进剂组合的单opellogent发动机适合于态度和轨道控制系统(AOCS)推进器的设计。
阿拉巴马州亨茨维尔是 Plasma Processes 的所在地,这是一家为航空航天和国防应用提供高温材料解决方案的材料公司。他们的能力包括多种热喷涂技术、近净形耐火金属制造以及一系列政府和商业客户实体。2016 年获得的一份小型企业创新研究 (SBIR) 合同推动了 Plasma 第一个完全集成的推进器组件的开发,该组件使用 Plasma 每天为各种实体制造的推力室、喷射器头和高温部件的组件工艺。推进器组件使用 ASCENT 或 AF-M315E 推进剂,该推进剂首次在绿色推进灌注任务 (GPIM) 上得到展示,该任务以 Plasma Processes 制造的推力室为特色。在展示了推进器的可行性后,Plasma 的 SBIR 推进器组件引起了 NASA 飞行项目的关注。2021 年,十二台推进器被交付给月球手电筒任务,其中四台推进器于 2022 年 12 月发射。
参考文献: • Gradl, P.、Tinker, D.、Park, A.、Mireles, P.、Garcia, M.、Wilkerson, R.、Mckinney, C. (2022)。“航空航天部件的稳健金属增材制造工艺选择与开发”。材料工程与性能杂志 (JMEP)。评论文章。 • Kerstens, F.、Cervone, A. 和 Gradl, P. (2021)。增材制造液体火箭发动机推力室的端到端流程评估。Acta Astronautica,182,454–465。https://doi.org/10.1016/j.actaastro.2021.02.034 • AIAA 书籍:推进系统的金属增材制造,Gradl、Protz、Mireles、Garcia(未发布)9
增材制造 (AM) 提供了新的设计和制造机会,可以降低成本和缩短工期、整合零件并优化性能。正在评估的一项技术是激光粉末定向能量沉积 (LP-DED),与激光粉末床熔合 (L-PBF) 相比,该技术可显著提高规模。NASA 和行业合作伙伴一直在开发 LP-DED 工艺,以展示用于液体火箭发动机通道冷却喷嘴的内部通道几何形状和开发组件。优化液体火箭发动机在极端高压和氢环境中的材料仍然是一项关键挑战。NASA 已经开发出一种名为 NASA HR-1(耐氢 -1)的辅助材料作为使用 AM 技术的解决方案。NASA HR-1 是一种高强度 Fe-Ni 高温合金,旨在抵抗高压、氢环境脆化、氧化和腐蚀。NASA HR-1 满足液体火箭发动机部件的材料要求,包括良好的耐氢性、高导电性、良好的低周疲劳性能以及高热通量环境中部件的高伸长率和强度。除了供应链的进步之外,高密度薄壁材料的材料特性和工艺特性已经完成。NASA 还在 LP-DED NASA HR-1 中完成了几个缩比和全尺寸通道壁喷嘴的制造,并完成了热火测试。这包括改进工艺以生产薄壁和各种通道几何形状,以满足通道壁喷嘴应用的要求。本文将概述 LP-DED 工艺开发、材料特性和特性、组件制造和热火测试。使用液氧 (LOX)/甲烷对着陆器级 7K-lbf 推力室完成了热火测试。除了硬件开发之外,还将介绍热火测试的设计概述和结果,以供未来在 2K-lbf 和 35k-lbf 推力室和大型制造技术演示器上进行测试。
添加剂制造(AM)为具有内部功能的复杂组件带来了重要的设计和制造机会,例如以前无法使用液体火箭发动机推力室。该技术可节省大量成本和计划减少,除了通过减轻重量和增加利润来优化新的绩效。特定于再生冷却的燃烧室和液体火箭发动机的喷嘴,添加剂制造具有形成复杂的内部冷却液通道和通道的关闭功能,可以包含具有单个操作的高压液体推进剂。使用激光粉床融合(L-PBF),大部分添加剂制造开发都集中在整体合金上,这些合金不允许对结构进行完全优化。国家航空航天局(NASA)完成了AM双金属L-PBF GRCOP-84铜合金燃烧室,具有AM Electron Beam Freeform Inconel 625结构夹克在低成本上级推进(LCUSP)项目下。正在开发一个名为“快速分析和制造推进技术”(RAMPT)的后续项目,以进一步扩展大型多合金推力室,同时将综合覆盖技术与大量储蓄机会相对。除了这些主要的制造开发外,分析建模工作还补充了过程开发,以模拟AM过程以减少构建失败和扭曲。RAMPT项目还在GRCOP-42的L-PBF之外,还为上述各种制造工艺的供应链介绍了供应链。RAMPT项目具有三个主要目标:1)推进吹粉的导向能量沉积(DED)以制造整体通道大型喷嘴,2)开发复合覆盖技术,以减少重量并为推力室内组件提供结构性能力,3)开发Bimetallic和多金属添加性添加性添加性产物和轴向物质的材料,以优化材料。本文将概述RAMPT项目,流程开发和硬件进展,迄今为止,材料和热火测试结果以及计划的未来发展。
本书提供了足够的细节,让负责液体推进剂火箭各个方面的人员能够熟悉和全面地学习,包括发动机系统设计、发动机开发和飞行器应用。它应使火箭工程师能够独立地进行完整或部分发动机系统的初步详细设计,并了解和判断组成完整发动机系统的各个子系统中的活动、问题、限制和“生活事实”。它还试图教育那些最终对专门子系统和组件设计(推力室、涡轮泵、控制阀等)感兴趣的人,让他们了解自己的子系统以及邻近的子系统和完整的发动机系统。这应该使学生能够准备切合实际的分析计算和设计布局,并为子系统生产发布的最终专门设计提供长远的领先优势。
dlrs太空推进研究所拥有与火箭发动机推室设计方面相关的实验研究的长期遗产。由于欧洲的传统关注欧洲的LOX/氢气推进系统,例如沟渠,HM-7B或Vinci,因此科学焦点被放在LOX和氢气的高压燃烧现象上。感兴趣的科学领域包括点火和瞬态,燃烧效率和动力学以及喷油器设计,燃烧室冷却,喷嘴流以及推力室结构和疲劳寿命。在欧洲研发测试台P8上使用各种测试标本进行了与高压燃烧相关的实验,该试验具有在代表典型火箭发动机的条件下进行测试的可能性[3]。自2014年以来,DLR也在涡轮机械领域建立能力。基于这些现有能力和测试功能,DLR于2017年启动了Lumen Bread Engine项目,其主要目标是:促进对发动机流程的理解,以系统级别展示能够预测