摘要 本研究调查了安装在螺旋桨尾流中的基于叶片的推力矢量系统的效率,该系统在净推力损失最小的情况下支持前向力。矢量系统本身既可以放置在独立螺旋桨配置中,也可以放置在机翼内螺旋桨配置中。代顿大学低速风洞 (UD-LSWT) 使用现成的 R/C 螺旋桨进行静态和基于风力的实验。灵敏度分析确定了叶片偏转角对推力矢量的影响以及螺旋桨相对于集成机翼上表面的位置对系统性能的影响。静态测试结果表明,当矢量设计放置在机翼中时,叶片性能显着改善。实现了推力矢量控制,随后俯仰力矩发生变化,在两种螺旋桨俯仰情况下,叶片偏转角逐渐增加:75° 和 90°。标准 90° 俯仰方向的集成式机翼螺旋桨系统的风洞试验结果显示,在前进比低于 0.3 时,推力矢量控制成功,这对于大多数相关应用而言都是实用的;螺旋桨叶片系统的 75° 俯仰方向观察到推力矢量控制能力扩展到 0.7 的前进比。敏感性分析表明,暴露在流动自由流中的螺旋桨的整体效率高于完全嵌入模拟机翼的螺旋桨,尽管嵌入式情况具有更好的推力矢量控制能力。致谢 衷心感谢亨利·卢斯基金会通过克莱尔·布思·卢斯 (CBL) 研究计划提供的支持。另一位重要的捐助者蔡杰龙先生(Jacky)对本作品在整个过程中给予的持续指导深表感谢。
摘要 本研究调查了位于螺旋桨尾流中的基于叶片的推力矢量系统的效率,该系统可在净推力损失最小的情况下支持前向力。矢量系统本身既可放置在独立螺旋桨配置中,也可放置在机翼螺旋桨配置中。在代顿大学低速风洞 (UD-LSWT) 使用现成的 R/C 螺旋桨进行静态和基于风力的实验。敏感性分析确定了叶片偏转角对推力矢量的影响以及螺旋桨相对于集成机翼上表面的位置对系统性能的影响。静态测试结果表明,当矢量设计放置在机翼中时,叶片性能显著改善。在两种螺旋桨俯仰情况下:75° 和 90°,随着叶片偏转角的逐渐增加,实现了推力矢量,随之改变了俯仰力矩。标准 90° 螺距方向的一体式机翼螺旋桨系统风洞试验结果显示,在低于 0.3 的前进比下成功实现推力矢量控制,这对于大多数相关应用而言是实用的;螺旋桨叶片系统的 75° 螺距方向观察到推力矢量控制能力扩展到 0.7 的前进比。敏感性分析表明,暴露在流动自由流中的螺旋桨的整体效率高于完全嵌入模拟机翼的螺旋桨,尽管嵌入式壳体具有更好的推力矢量控制能力。致谢 诚挚感谢亨利·卢斯基金会通过克莱尔·布思·卢斯 (CBL) 研究项目提供的支持。另一位主要捐助者蔡杰龙先生(Jacky)对本工作期间的持续指导深表感谢。
推力矢量构成喷嘴优化和增加功能的下一步。喷嘴用于将射流引导到发动机轴以外的方向上,以产生飞机重心周围的横向力和矩,可用于飞机操纵。在二维螺距中只有喷嘴可以在垂直平面内偏转,因此喷嘴补充了水平控制表面。有几种类型的推力向量喷嘴。例如,有2-D和3-D推力向量的喷嘴。ITP喷嘴是3-D矢量喷嘴。也,达到气射流偏转的方法有不同的方法:最有效的方法是仅机械偏转截面,从而最大程度地减少对喉咙上游(Sonic)部分的影响。取决于此不同部分的控制水平,con-di喷嘴可以是两种类型:
re.public@polimi研究出版物politecnico di Milano后印版这是:J.D.biggs,G。使用单个可变速度控制力矩陀螺仪指导控制与动力学杂志,第1卷。43,N。10,2020,p。 1865-1880 doi:10.2514/1.G005181最终出版物可在https://doi.org/10.2514/1.g005181获得发布版本可能需要订阅。 引用这项工作时,请引用原始发表的论文。43,N。10,2020,p。 1865-1880 doi:10.2514/1.G005181最终出版物可在https://doi.org/10.2514/1.g005181获得发布版本可能需要订阅。引用这项工作时,请引用原始发表的论文。
推力矢量是一种新型控制技术概念。它是指发动机推力线的偏转,以提供俯仰、滚转或偏航控制力矩或直接升力。与传统的气动控制面相比,推力矢量控制对动压的依赖性较小,能够在大迎角和失速后飞行条件下提供控制力矩。因此,推力矢量技术已应用于多种军用战斗机,以提高其机动性。只有少数人研究过推力矢量在民用运输机上的应用。需要进行量化研究,以寻找在民用运输机上应用推力矢量控制的潜在好处。
电气接口 I2C、CAN、总线电压 I2C、CAN、总线电压 5.2 6 DOF 推进模块 为了满足当前对更大、更强大的立方体卫星的需求,有时需要六自由度 (6 DOF) 推进能力,GomSpace 可以提供具有定制推力方向的推进系统,每个模块最多 6 个推进器。这种推进系统(通常每个卫星有两个模块,因此有 12 个推进器)旨在沿 3 个正交轴(即 x、y、z 航天器轴)中的每一个提供直接平移推力,并围绕 3 个正交轴中的每一个提供直接旋转推力。这可以实现一系列高度先进的立方体卫星任务,例如自主编队飞行、会合对接、近距离检查等。我们的 6-DOF 推进解决方案基于标准 3U 和 6U 模块,因此具有相似的技术规格。举例来说,下图 2 展示了 ESA 任务 RACE 的 6DOF 推进模块设计。其中两个推力矢量与坐标系中的 Z 轴对齐,而其他四个推力矢量与 X 轴形成 48 度角。
具有多轴推力矢量的纤维馈电脉冲等离子推力器 (FPPT) IEPC 2022-558 在第 37 届国际电力推进会议上发表 麻省理工学院,美国马萨诸塞州剑桥 2022 年 6 月 19 日至 23 日 Curtis A. Woodruff 1、Magdalena Parta 2、Darren M. King 3、Rodney L. Burton 4 和 David L. Carroll 5 CU Aerospace (CUA),美国伊利诺伊州香槟市 61822 摘要:CU Aerospace (CUA) 开发了同轴纤维馈电脉冲等离子推力器 (FPPT),具有多轴推力矢量能力,可为小型卫星实现高脉冲主推进任务。推进器子系统测试采用 1.7U 系统配置,配备 26 J 储能单元 (ESU),运行功率为 78 瓦 (3 Hz),平均推力为 0.60 mN,比冲为 3,500 s,效率为 13%。推进器性能随燃料进给率而变化。加速子系统寿命测试显示,电容器充电/放电循环次数超过 16 亿次,电流波形几乎相同。独立控制输入功率和推进剂进给率的能力允许调整推力水平和 Isp。迄今为止的测试表明,电磁推力矢量控制能力在俯仰和偏航轴上达到 ±10 度左右。此外,该系统还有可能提供对滚转轴的控制权。俯仰和偏航推力矢量控制性能与最近的推进器性能改进一起展示。一台总冲量为 28,000 Ns 的 1.7U FPPT 正在集成到 CUA 的 NASA 资助的双推进实验 (DUPLEX) 立方体卫星上,目前计划于 2023 年第一季度发射。FPPT 技术是一种极具吸引力的选择,可以满足许多微推进需求,包括延长轨道机动、防撞机动、深空任务、阻力补偿和脱离轨道。命名法
该领域涵盖所有战术推进系统,包括适用于空对空、空对地、地面发射和水下任务的系统。典型系统包括战术导弹助推器或维持器、动能导弹、自由飞行火箭、反辐射、反舰、反装甲、反人员/物资导弹、冲压发动机、超燃冲压发动机和联合循环推进器。评估先进推进概念和演示的系统研究,其中包含一种或多种适用于战术推进的组件技术,这些研究很有意义。组件技术的示例包括推进剂和燃料、燃料管理系统、壳体和燃烧室、进气口、喷嘴、推力矢量控制系统、推力管理系统和先进材料应用。生命周期成本和非军事化也是感兴趣的主题。
摘要:自 2018 年场发射电推进 (FEEP) 推进器首次飞行以来,已发射了 200 多个基于 FEEP 的推进系统,其中包括 190 个传统 ENPULSION NANO 系统、18 个更高功率的 MICRO 系统和 9 个新型 NANO R 3 /AR 3。后者是传统 NANO 的后继产品,AR 3 版本允许直接推力矢量能力而无需活动部件。本文报告的所有推进系统均基于被动供给的铟基液态金属 FEEP 技术。本文报告了最新的发射和飞行遗产统计数据。我们介绍了在不同应用和轨道中使用的不同推进系统的遥测数据,并介绍了在 LEO 上对传统 NANO 推进器进行 1350 小时累计点火后进行的成功的在轨提取器清洁程序。