句子包含决定其意义的结构,而不仅仅是单个单词的意义。Ding 及其同事 (2016) 的一项有影响力的研究使用短语和句子的频率标记来表明,人类大脑对结构很敏感,因为它会在结构呈现的速率下找到神经功率的峰值。从那时起,人们就如何最好地解释这种对语言科学产生深远影响的结果模式展开了激烈的争论。使用分层结构构建的模型以及基于联想序列处理的模型可以预测神经反应,从而产生了一个推理僵局,即哪一类模型可以解释神经读数中反映的语言计算的性质。在当前的手稿中,我们讨论了各种模拟所说明的文献中得出的结论中出现的陷阱和常见谬误。我们得出结论,仅基于这些神经数据以及任何类似的数据来推断句子处理的神经操作是不够的。我们讨论了如何最好地评估模型,以及如何以忠实于认知、神经和语言原理的方式对神经读数进行建模以进行句子处理。
法律声明:本文件受版权保护,除 ICH 徽标外,可根据公共许可使用、复制、纳入其他作品、改编、修改、翻译或分发,但必须始终承认 ICH 对该文件的版权。如果对文件进行任何改编、修改或翻译,必须采取合理步骤清楚地标记、划定或以其他方式标识对原始文件所做的更改或基于原始文件所做的更改。必须避免给人留下 ICH 认可或赞助原始文件的印象。文件按“原样”提供,不提供任何形式的担保。在任何情况下,ICH 或原始文件的作者均不对因使用该文件而产生的任何索赔、损害或其他责任负责。上述许可不适用于第三方提供的内容。因此,对于版权归第三方所有的文件,必须获得该版权持有人的许可才能复制。
[1] F. Bellard,“ Qemu,快速和便携式动态翻译器。”,在Usenix年度技术会议上,Freenix Track,第1卷。41,pp。10–5555,美国加利福尼亚,2005年。[2]“ Spike Risc-V ISA模拟器。” https://github.com/riscv- software-src/riscv-isa-sim。访问:2024-03-12。[3] J. L. Power和等,“ Gem5模拟器:20.0+版本”,Corr,Vol。ABS/2007.03152,2020。[4] C. Lattner和等,“ MLIR:针对域特定计算的缩放编译器基础架构”,2021年(CGO),pp。2–14,IEEE,2021。[5] C. Lattner和V. Adve,“ LLVM:终身计划分析与转型的汇编框架”,CGO2004。,pp。75–86,IEEE,2004年。[6] H.-I.C. Liu,M。Brehler,M。Ravishankar,N。Vasilache,B。Vanik和S. Laurenzo,“ Tinyiree:从编译到部署到部署的嵌入式系统的ML执行环境”,IEEE Micro,第1卷。 42,否。 5,pp。 9–16,2022。C. Liu,M。Brehler,M。Ravishankar,N。Vasilache,B。Vanik和S. Laurenzo,“ Tinyiree:从编译到部署到部署的嵌入式系统的ML执行环境”,IEEE Micro,第1卷。42,否。5,pp。9–16,2022。
其中 𝚺 𝑋 ( 𝑧 ) 是在 𝑍 = 𝑧 时 𝑿 ( 𝑧 ) 的协方差矩阵,并且 𝑍 ∈[0 , 1] 具有连续密度。逆协方差矩阵 { 𝚺 𝑋 ( 𝑧 )} −1 编码了时间 𝑍 = 𝑧 时随机变量对之间的条件依赖关系:当且仅当在时间 𝑍 = 𝑧 时第 𝑗 和第 𝑘 变量与其他变量条件独立时,{ 𝚺 𝑋 ( 𝑧 )} −1 𝑗𝑘 = 0。在自然观看实验中,主要目标是构建一个锁定在外部刺激处理上的大脑连接网络,称为刺激锁定网络(Simony 等,2016;Chen 等,2017;Regev 等,2018;Musch 等,2020)。构建刺激锁定网络可以更好地表征连续刺激下大脑模式的动态变化(Simony 等,2016)。构建刺激锁定网络的主要挑战是缺乏高度控制的实验来消除自发和个体差异。测得的血氧水平依赖(BOLD)信号不仅包含特定于刺激的信号,还包括特定于每个受试者的内在神经信号(随机波动)和非神经元信号(生理噪声)。内在神经信号和非神经元信号可以解释为测量误差或混淆刺激特定信号的潜在变量。在整篇文章中,我们将非刺激诱导信号称为受试者特定效应。因此,使用测量数据直接拟合(1)将得到一个随时间变化的图表,该图表主要反映每个大脑内的内在 BOLD 波动,而不是由于自然连续刺激引起的 BOLD 波动。我们利用自然观看实验的实验设计方面,并提出通过将内在和非神经元信号视为干扰参数来估计动态刺激锁定的大脑连接网络。我们的建议利用了这样一个事实,即相同的刺激将给予多个独立的受试者,并且不同受试者的内在神经和非神经元信号是独立的。这
使用专家系统[3],可以编码可以代表环境或应用程序域中固有的因果规则的简单规则集。这些规则控制系统(或系统的代理)如何感知环境,计划行动并执行任务。规则是由决定系统行为的人类程序员手工编码的。在视频游戏等环境中,这些规则可能会导致能够与环境,其他代理和玩家进行复杂的互动的智能代理。不幸的是,这些规则在程序员提供的规则之外的情况之外时,这些规则很容易失败。airis是一种从对其操作环境的原始观察结果中自主学习专家的休闲规则的方法。每个规则都描述了状态的部分变化(而不是全州过渡),并且可以共同用于通过将规则预先确定不匹配的投票机制产生未来的预测状态。在高水平上,这导致了代表内部世界模型的动作状态图。但是,与马尔可夫决策过程(MDP,[8])中的状态转移模型相比,代理可以构建代理商以前尚未经历过的未来状态。Sys-TEM然后使用该世界模型上的任何计划算法来制定计划和执行任务,同时使其具有与非平稳环境的灵活性,并通过典型的MDP形式化可以实现强化学习推动者[5]超越强化学习剂[5]来实现的灵活性。airis保留了透明度,可变性,可忽视性和有效性等专家系统的所有好处,同时还提供了灵活性和
复杂的机械系统通常由于能量耗散机制,材料本构关系或几何/连通性机制中存在非线性而表现出强烈的非线性行为。这些系统的数值建模导致具有潜在拉格朗日结构的非线性全阶模型。这项工作提出了一种通过结构化的机器学习来增强Lagrangian运算符推理方法,以学习非线性机械系统的非线性降低阶模型(ROM)。这种两步方法首先通过拉格朗日操作员推断学习了最合适的线性拉格朗日ROM,然后提出了一种具有结构的机器学习方法,以学习减少空间中的非线性。所提出的方法可以完全从数据中学习具有结构性的非线性ROM,这与现有的操作员推理方法需要了解非线性术语的数学形式。从机器学习的角度来看,它通过提供知情的先验(即线性Lagrangian ROM结构)来加速培训结构的神经网络,并通过在减少空间上运行来降低网络培训的计算成本。该方法首先在两个模拟示例中证明:保守的非线性棒模型和具有非线性内部阻尼的二维非线性膜。最后,该方法在实验数据集中证明了该方法,该数据集由从圈接头束结构中获得的数字图像相关测量值组成,从中可以从中获得预测模型,该模型可以准确地捕获幅度依赖性频率和阻尼特性。数值结果表明,所提出的方法产生可概括的非线性ROM,这些ROM表现出有界的能量误差,可靠地捕获非线性特征,并在训练数据制度之外提供准确的长期预测。
llms的发展可能是昂贵且复杂的,但是组织可以轻松增强,微调和自定义现有的开源LLMS以满足其需求。基于API的现成的服务(例如OpenAI GPT)提供了一个更简单的解决方案,但是推断(即查询)成本可以迅速增加,尤其是对于大型组织和更复杂的LLMS。另外,组织可以在功能强大的启用GPU的企业服务器或等效启用GPU的云实例和机器学习平台(例如NVIDIA的AI Enterprise)上构建和控制自己的LLM推断解决方案,并运行开放源llms。毫不奇怪,企业策略小组发现,组织开发和使用LLM支持的Genai的最受欢迎的战略是利用开源LLM并在内部开发Genai解决方案。2
在过去的几十年中,血液动力学模拟量已经稳步发展,并且已成为研究心血管系统中的选择工具。通常使用此类工具从生理参数中模拟全身血液动力学,但解决了将波形映射回到合理的生理参数的相应反问题仍然是诺言和具有挑战性的。受基于仿真推理(SBI)进展的动机,我们将此反问题作为统计推断。与替代方法有关,SBI为互动的参数提供了分布,为单个测量值提供了不确定性的多维表示。我们通过对五个临床兴趣的生物标志物进行近距离的不确定性分析来展示这种能力,并比较了几种测量模态。除了对已知事实的佐证(例如估计心率的可行性)之外,我们的研究突出了从护理标准测量值中估算新生物标志物的潜力。sbi揭示了实际相关的发现,这些发现无法通过标准灵敏度分析来捕获,例如,参数估计表现出不同的不确定性状态的亚种群的存在。最后,我们研究了与模拟波形数据库的体内和silico之间的差距,并批判性地讨论了心血管模拟如何为真实世界数据分析提供信息。
摘要:Segundo-Ortin&Calvo's(S&C)对“植物神经生物学”的彻底回顾提出了支持植物知觉可能性的证据。他们提出了一个令人信服的案例,植物可以预期,评估风险,合作,模仿和追求目标,以及动物对应物。S&C指出,有一个双重标准:与人类主观经历相关的行为模式被认为是在非人类动物中推断认知的有效,而在包括植物在内的其他系统中则无效。我们认为,包括知觉在内的认知功能可以通过非常不同的系统及其不同的底物来实现。我们提供了基础认知文献中的一些背景,并表明神经生物学的深刻见解远远超出了神经元。