由卷积神经网络激励的深度学习在一系列医学成像问题(例如图像分类,图像分割,图像合成等)中非常成功。但是,对于验证和可解释性,我们不仅需要模型做出的预测,而且还需要在做出这些预测时它的自信。这对于人民接受安全的关键应用很重要。在这项工作中,我们使用了基于变异推理技术的编码器解码器结构来分割脑肿瘤图像。我们使用骰子相似性系数(DSC)和联合(IOU)的交集作为评估指标,评估公开可用的Brats数据集的工作。我们的模型能够以原则上的贝叶斯方式考虑脑肿瘤,同时考虑到疾病的不确定性和认知不确定性。
由栖息地退化和气候破裂驱动的全球生物多样性下降是一个重大问题。准确的变化措施对于提供物种种群变化的可靠证据至关重要。与此同时,公民科学数据已经看到了数量和来源的显着扩展,并作为评估物种地位的基础。不断增长的数据储层为新颖和改进的推理提供了机会,但通常会带来计算成本:计算效率至关重要,尤其是在需要定期分析更新时。基于最近的研究,我们介绍了适用于新模型的计算有效方法的插图,该方法适用于三个主要的公民科学数据集。我们扩展了一种建模季节性生物的丰度变化的方法,首先是为了有效地适应多年的计数数据,其次是用于使用快照大众参与调查的计数。我们还提出了一种有效地适合机会主义公民科学数据的变异推理方法。公民科学数据的持续增长提供了前所未有的机会,以增强我们对物种如何应对人为压力的理解。拟合新模型的有效技术对于准确评估物种的地位,支持决策,设定可衡量的目标以及实现有效的保护工作至关重要。
摘要 - 混乱,密集和染色环境中的运动产生是机器人技术中的一个核心话题,被视为多目标决策问题。当前的安全性和性能之间的权衡。一方面,反应性策略保证了对环境变化的快速响应,其风险次优行为。另一方面,基于计划的运动产生提供可行的轨迹,但是高计算成本可能会限制控制频率,从而限制安全性。为了结合反应性策略和计划的好处,我们提出了一种分层运动方法。此外,我们采用概率推理方法来形式化层次模型和随机优化。我们将这种方法视为随机,反应性专家政策的加权产品,在该策略中,计划用于适应任务范围内的最佳权重。这种随机优化避免了局部优点,并提出了可反应性计划,以发现混乱且致密的环境中的路径。我们在平面导航和7DOF操作中进行的广泛实验研究表明,我们提出的层次运动生成方法的表现优于近视反应性控制器和在线重新规划方法。其他材料可在https://sites.google.com/view/hipbi上找到。
由于复制越来越多的研究的复制,生物科学中的典型统计实践已被越来越受到质疑,其中许多研究被无效假设测试设计和P值解释的相对难度所困扰。贝叶斯推论代表了一种根本不同的假设检验方法,由于其易于解释和对先前假设的明确声明,因此获得了新的兴趣作为潜在的替代或对传统无效假设检验的补充。贝叶斯模型在数学上比等效频繁的方法更为复杂,这些方法历来将应用程序限制在简化的分析案例中。但是,随着计算能力的指数增加,概率分布采样工具的出现现在可以在任何数据分布下快速而强大的推断。在这里,我们介绍了在大鼠电生理和计算建模数据中使用贝叶斯推断在神经科学研究中使用贝叶斯推断的实用教程。我们首先是对贝叶斯规则和推理的直观讨论,然后使用来自各种神经科学研究的数据制定基于贝叶斯的回归和ANOVA模型。我们展示了贝叶斯推论如何导致对数据的易于解释分析,同时提供开源工具箱来促进贝叶斯工具的使用。
摘要 - 在过去的十年中,人工智能(AI)和Edge Computing(EC)的关键进步已导致Edgeai服务的发展,以提供对关键任务应用必不可少的智能和低潜伏期响应。但是,Edgeai服务对网络极端的扩展可能会面临挑战,例如负载波动,导致AI推断延迟以及对能源效率的担忧。本文提出了“模型交换”,其中Edgeai服务使用的模型将与另一个随时可用的模型交换,以便在运行时推理任务中实现成本和能源节省。ModelSwapper可以通过采用低成本算法技术来实现这一目标,该技术探讨了计算开销与模型准确性之间有意义的权衡。这样做,边缘节点通过用更简单的模型代替复杂模型来适应负载波动,从而满足所需的延迟需求,尽管不确定性较高。我们使用两种EDGEAI服务(对象检测,NLU)进行评估表明,ModelSwapper可以显着减少至少27%和68%的能量使用和推理延迟,而准确性仅降低了1%。索引术语 - 机器学习,边缘计算
机器学习可用于根据精神障碍的共同生物学基础来定义精神疾病的亚型。在这里,我们分析了来自 ENIGMA、非 ENIGMA 队列和公共数据集的 41 个国际队列中 4,222 名精神分裂症患者和 7038 名健康受试者的横断面大脑图像。使用亚型和阶段推断 (SuStaIn) 算法,我们通过绘制精神分裂症中灰质变化的空间和时间“轨迹”来识别两个不同的神经结构亚型。亚型 1 的特征是早期皮质为主的损失和纹状体扩大,而亚型 2 显示海马、纹状体和其他皮质下区域早期皮质下为主的损失。我们确认了这两种神经结构亚型在欧洲、北美和东亚等不同样本地点的可重复性。这种基于成像的分类法有可能识别具有共同神经生物学属性的个体,从而表明基于生物因素重新定义现有疾病结构的可行性。
11 美国科罗拉多州奥罗拉市科罗拉多大学安舒茨医学院肿瘤内科 12 美国马里兰州贝塞斯达市国家癌症研究所癌症研究中心胸部和胃肠道恶性肿瘤分部。13 美国马里兰州贝塞斯达市国家癌症研究所癌症研究中心免疫肿瘤学中心。14 美国马里兰州贝塞斯达市国家癌症研究所癌症研究中心外科肿瘤学项目。15 美国马里兰州贝塞斯达市国家癌症研究所癌症研究中心泌尿生殖系统癌症发病机制实验室 16 美国马里兰州贝塞斯达市国家癌症研究所癌症研究中心泌尿生殖系统恶性肿瘤分部。* 通讯作者:danhtai.hoang@anu.edu.au (DTH)、eric.stone@anu.edu.au (EAS) 和 eytan.ruppin@nih.gov (ER)
[1] F. Bellard,“ Qemu,快速和便携式动态翻译器。”,在Usenix年度技术会议上,Freenix Track,第1卷。41,pp。10–5555,美国加利福尼亚,2005年。[2]“ Spike Risc-V ISA模拟器。” https://github.com/riscv- software-src/riscv-isa-sim。访问:2024-03-12。[3] J. L. Power和等,“ Gem5模拟器:20.0+版本”,Corr,Vol。ABS/2007.03152,2020。[4] C. Lattner和等,“ MLIR:针对域特定计算的缩放编译器基础架构”,2021年(CGO),pp。2–14,IEEE,2021。[5] C. Lattner和V. Adve,“ LLVM:终身计划分析与转型的汇编框架”,CGO2004。,pp。75–86,IEEE,2004年。[6] H.-I.C. Liu,M。Brehler,M。Ravishankar,N。Vasilache,B。Vanik和S. Laurenzo,“ Tinyiree:从编译到部署到部署的嵌入式系统的ML执行环境”,IEEE Micro,第1卷。 42,否。 5,pp。 9–16,2022。C. Liu,M。Brehler,M。Ravishankar,N。Vasilache,B。Vanik和S. Laurenzo,“ Tinyiree:从编译到部署到部署的嵌入式系统的ML执行环境”,IEEE Micro,第1卷。42,否。5,pp。9–16,2022。
本研讨会的主题是多种情况下统计推断任务的计算复杂性。这是一个相对较新且迅速发展的研究领域。数学统计和计算复杂性的领域已经存在很大程度上是彼此独立的:前者传统上研究了统计或信息限制,而后者主要集中于与恐怖分子(对抗性)造成的输入的组合问题,这些输入并不能准确地反映出数据问题的现实。直到最近十年,研究界才出现了致力于解决界面上的基本问题。我们简要介绍了为什么需要新观点。统计推断中的两个基本询问线长期以来一直是:(i)确定基本统计学(即信息理论)限制; (ii)找到有效的算法实现了这些限制。但是,对于许多结构化的推理问题,尚不清楚统计最佳性是否与有效的合并兼容。统计上最佳的估计器通常需要对可能的结构进行不可行的详尽搜索。相反,对于许多设置,我们知道的计算有效算法在统计学上是次优的,需要更高的信号强度或比理论上的信息更高的数据。这种现象既迷人又令人震惊。相反,实际上相关的基准是计算有效算法的基本统计限制。我们如何找到最佳的有效算法?表明,自数学统计开始以来所研究的这些问题的信噪比(或数据量)的信息理论限制并不是现代高维设置中实际上相关的基准。有效的算法无法达到统计限制时,据说问题具有统计计算差距。在许多观察到的情况下,差距可以很大,因此有效的算法需要的数据级数比理论上的信息要多。对统计计算差距的意识并不是什么新鲜事物,早期的工作表明了人工构建的学习问题中的差距[10,19,20],而最近的工作着重于统计和计算效率之间的算法[21、20、20、8、9]。现在,数十个重要的高维统计估计问题被认为具有不同的计算和统计限制。这些问题(例如,稀疏的线性回归或稀疏相检索[24,7,11,17])在实践中无处不在,并且在理论上进行了充分研究,但中央序列仍然存在:计算高效算法的基本数据限制是什么?在更基本的层面上,出于共同的原因而出现的这些统计计算差距是否存在?是否有希望建立一个广泛适用的理论,描述和解释统计计算权衡?
使用专家系统[3],可以编码可以代表环境或应用程序域中固有的因果规则的简单规则集。这些规则控制系统(或系统的代理)如何感知环境,计划行动并执行任务。规则是由决定系统行为的人类程序员手工编码的。在视频游戏等环境中,这些规则可能会导致能够与环境,其他代理和玩家进行复杂的互动的智能代理。不幸的是,这些规则在程序员提供的规则之外的情况之外时,这些规则很容易失败。airis是一种从对其操作环境的原始观察结果中自主学习专家的休闲规则的方法。每个规则都描述了状态的部分变化(而不是全州过渡),并且可以共同用于通过将规则预先确定不匹配的投票机制产生未来的预测状态。在高水平上,这导致了代表内部世界模型的动作状态图。但是,与马尔可夫决策过程(MDP,[8])中的状态转移模型相比,代理可以构建代理商以前尚未经历过的未来状态。Sys-TEM然后使用该世界模型上的任何计划算法来制定计划和执行任务,同时使其具有与非平稳环境的灵活性,并通过典型的MDP形式化可以实现强化学习推动者[5]超越强化学习剂[5]来实现的灵活性。airis保留了透明度,可变性,可忽视性和有效性等专家系统的所有好处,同时还提供了灵活性和