人脸在人类社会生活中扮演着不可或缺的角色。目前,计算机视觉人工智能(AI)可以捕捉和解释人脸,用于各种数字应用和服务。面部信息的模糊性最近导致不同领域的学者就AI应该根据面部外观对人做出哪些类型的推断展开争论。人工智能研究通常通过参考人们在初次见面场景中如何形成印象来证明面部人工智能推理的合理性。批评者对偏见和歧视表示担忧,并警告说面部分析人工智能类似于面相学的自动化版本。然而,这场辩论缺少的是对人工智能“非专家”如何从道德上评估面部人工智能推理的理解。在一项包含 24 个治疗组的双场景小插图研究中,我们表明非专家 (N = 3745) 在低风险广告和高风险招聘环境中拒绝面部 AI 推断,例如肖像图像中的可信度和可爱度。相反,非专家同意广告中的面部 AI 推断,例如肤色或性别,但不同意招聘决策环境中的推断。对于每个 AI 推断,我们要求非专家以书面答复的形式证明他们的评估。通过分析 29,760 份书面辩解,我们发现非专家要么是“证据主义者”,要么是“实用主义者”:他们根据面部是否需要为推理提供充分或不充分的证据(证据主义辩解)或推理是否会导致有益或有害的结果(实用主义辩解)来评估面部 AI 推理的道德地位。非专家的辩解强调了面部 AI 推理背后的规范复杂性。证据不足的 AI 推理可以通过考虑相关性来合理化,而无关的推理可以通过参考充分证据来合理化。我们认为,参与式方法为日益可视化的数据文化中道德 AI 的发展提供了宝贵的见解。
当人类合作时,他们经常通过言语交流和非语言诉讼来协调自己的活动,并使用此信息推断共同的目标和计划。我们如何建模这种推论能力?在本文中,我们介绍了一个合作团队的模型,其中一个代理人(校长)可以将有关其共同计划的自然语言指示传达给另一个代理人,助手,使用GPT-3作为指导说法的可能性功能。然后,我们展示了第三人称观察者如何通过采取行动和指令的多模式贝叶斯逆计划来推断团队的目标,从而在代理人将采取行动并合理地实现目标的情况下计算后验分布对目标的后验分配。我们通过将这种方法与多代理网格世界中的人类目标推断进行比较来评估这种方法,发现我们的模型的推论与人类的判断非常紧密相关(r =0。96)。与仅采取行动的推论相比,我们发现指示会导致更快,不确定的目标推断,从而强调了言语交流对合作社的重要性。引言为了度过合作生活,像我们本身这样的社会代理人必须将口头和非语言信息同时整合到他人思想的连贯理论中,从而推断出有关共享或个人目标和计划的推论,这些目标和计划可以用作合作行动的指导。是什么解释了人类的这种推论能力,如何才能告知合作AI系统的表现?2017)。我们通过基于认知能力的悠久传统来迈出答案的步骤,即人类语言和行动将其视为贝叶斯解释的过程:一方面,贝叶斯理论理论(BTOM)认为,人类通过推断出这些行动来推断这些行动,这些行动将这些行动推断为这些行动,这些行动将这些行动解释为理性(Baker,saxe,saxe and saxe and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and 2009;另一方面,比率语音法案(RSA)理论表明,人类不仅在裸语义上,而且是他们所暗示的务实意图(Goodman andStuhlmüller2013; Goodman and Frank 2016)。由于这些框架中的每个框架都是根据贝叶斯的范围而在精神状态上提出的,这些状态可能会解释观察到的
计算神经科学的核心目的是将大量神经元种群的活性与潜在的动态系统联系起来。这些神经动力学的模型理想情况下应既可以解释又适合观察到的数据。低级复发性神经网络(RNN)通过具有可拖动动力学表现出这种解释性。但是,尚不清楚如何最佳地拟合低级别的RNN与由对潜在随机系统进行嘈杂观察的数据组成的数据。在这里,我们建议与随机的低级RNN一起使用各种顺序蒙特卡洛方法。我们在由连续和尖峰神经数据组成的几个数据集上验证了我们的方法,在该数据集中,我们获得的尺寸潜在动力学比当前方法的当前状态较低。此外,对于具有分段线性非线性的低级模型,我们展示了如何有效地识别单位数量中多项式而不是指数成本的所有固定点,从而分析了针对大型RNN的推断动力学分析。我们的方法都阐明了实验记录的基础动力系统,并提供了一种生成模型,其轨迹与观察到的可变性相匹配。
研究人员通过分析一组访谈数据探索了混合方法研究设计。Saldana的模型用于完成开放编码数据和主题编码数据。三个主题被认为支持合作学习模型。其中包括:a)通过经过事件和环境的了解,b)实施和行动,以及c)由合作学习模型(CLM)组成的观点和看法。术语和短语的频率由证据变量组成。广义线性模型(GELM)用于检查三个主题与合作学习模型之间的关系。GELM分析报告了CLM与三个主题之间的关系。这是一种将Saldana的定性数据分析和凝胶整合到一种混合方法设计中的新实践。
生物多样性的抽象准确的系统分类对于生态和进化研究是基础,尤其是在一个越来越降低和威胁生物多样性的世界中。在本研究中,我们建议使用遗传标记物的探索性分析,以从物种之间作为分子特征(MTS)的序列序列来获取其他信息。这些分子特征又可以为综合分类法提供独立的信息,以帮助属级限制。因此,我们使用叶叶属抗肌emimyrmex Cristiano等,2020年,Atta Fabricius,1804年,1865年的Acromyrmex Mayr作为模型来评估定期在系统生理和进化研究中定期应用的线粒体基因组片段。生物信息学分析揭示了可以用作诊断特征的物种之间共有的结构证据,将其与其他物种区分开,并支持对叶片的三个属的分类。有丝分裂组段的分子特征,以及其他特征,例如染色体数,核型特征,分子系统发育和形态学数据,可用于综合框架中,以访问生物多样性和目的分类学假设。
凝视估计方法由于测试和训练数据之间的域间隙,在跨不同领域进行评估时,经常会出现明显的表现降解。现有方法试图使用各种主要的概括方法来解决此问题,但由于凝视数据集的多样性有限,例如外观,可穿戴和图像质量,因此很少成功。为了克服这些限制,我们提出了一个名为Clip Gaze的新型框架,该框架利用预先训练的视觉模型来利用其可转移的知识。我们的框架是第一个利用视觉和语言跨模式的方法来进行凝视任务。具体来说,我们通过将其从凝视式的功能推开,可以通过语言描述灵活构建,从而提取了与凝视的功能。要学习更多合适的提示,我们建议一种个性化的上下文优化方法,以提示提示。此外,我们还利用凝视样本之间的关系来完善视线相关特征的分布,从而提高了凝视估计模型的概括能力。的实验实验表明,在四个跨域评估上,夹具凝视的表现出色。
- 了解疫苗引起的免疫反应如何预测的保护目前是否过于限制,无法在没有临床数据的情况下推断出可从免疫反应推断出疫苗的有效性,从而提供了直接的保护证据
生成模型具有多种应用,包括语言处理和Birdsong分析。在这项研究中,我们证明了如何使用旨在防止序列产生过度笼的统计检验来推断孟加拉语歌曲中音节序列的最小模型。我们专注于部分可观察到的马尔可夫模型(POMM),该模型由状态和它们之间的概率过渡组成。每个状态都与特定的音节相关联,有可能多个状态与同一音节相对应。此特性将POMM与标准Markov模型区分开,其中每个音节都链接到单个状态。在音节中存在多个状态表明,音节之间的过渡受到这些转变发生的特定情况的影响。我们应用这种方法来分析六个成年男性孟加拉犬的歌曲。我们的结果表明,听觉反馈在塑造孟加拉语歌曲的上下文依赖性音节过渡方面起着至关重要的作用。