从单个视图中恢复3D场景几何形状是计算机视觉中的基本问题。虽然经典的深度估计方法仅推断出2.5D场景表示为图像平面,但最新的基于辐射范围的aperach是重建完整的3D代表。然而,这些方法仍然在被占地的区域困难,因为没有视觉观察的几何形状需要(i)周围的语义知识,以及(ii)关于空间上下文的推理。我们提出了Kyn,这是一种单视场景重建的新方法,其原因是语义和空间上下文来预测每个点的密度。我们引入了一个视觉模块模块,以使用细粒度的语义信息丰富点特征。我们通过语言引导的空间注意机制在整个场景中汇总了点表示,以产生意识到3D语义环境的每点密度预测。我们表明,与预测每个3D点的密度相比,Kyn改善了3D形状的恢复。我们在Kitti-360上实现了最新的场景和对象重建结果,并且与先前的工作相比,零弹性概括的改进。项目页面:https://ruili3.github.io/kyn。
学期学时20学期 - VI课程代码课程类型学会时间HQ-006古兰经强制性的翻译1 Chem-319物理化学I-I(化学动力学)强制性2 Chem-320物理化学化学(体温动力学)强制性2化学-321物理化学实验室强制性化学1 Chemistory 1 Chemistor 1 Chemistor 1 Chemistor 1 Comportor 2 Comprions 2 Comportion 1 Chemistor 1 Comportor 2 Comistry 1 Comportor 2 Cosistry 2 Comistry 1 Chemistry 1 Comportion 2 Comistor 2 Chem-323 Inorganic Chemistry-II (f-block elements) Compulsory 2 Chem-324 Inorganic Chemistry Lab Compulsory 1 Chem-325 Organic Chemistry-I (Reaction Mechanisms-I) Compulsory 2 Chem-326 Organic Chemistry-II (Spectroscopy) Compulsory 2 Chem-327 Organic Chemistry Lab Compulsory 1
下一代对话式 AI 系统需要:(1)逐步处理语言,逐个标记,以提高响应速度,并能够处理对话现象,例如暂停、重新开始和自我更正;(2)逐步推理,允许建立超出所说内容的意义;(3)透明且可控,允许设计人员和系统本身轻松确定特定行为的原因并针对特定用户组或领域进行定制。在这篇短文中,我们介绍了正在进行的初步工作,将动态语法(DS) - 一种增量语义语法框架 - 与资源描述框架(RDF)相结合。这为创建增量语义解析器铺平了道路,该解析器在话语展开时逐步输出语义 RDF 图。我们还概述了如何通过 RDF 将解析器与增量推理引擎集成。我们认为,这种 DS - RDF 混合体满足了上面列出的要求,产生了可用于构建响应式、实时、可解释的会话式 AI 的语义基础设施,可以针对特定用户群体(例如痴呆症患者)快速定制。
Wei等人,《经过思考链》提示在大语言模型中引起推理,Neurips 2022。nye等人,展示您的作品:与语言模型中间计算的刮擦程序,2021。
●4801计算机科学I●4838机械制图和设计II●5236计算机科学II●5249计算机科学III:软件开发帽岩石●5250计算机科学III:数据库●5251计算机科学III:信息学III:信息学:信息学●5253 Computer Science III:Cybersecurity II:Cybersecurity II:Cybersecurity II●56 ARTACTECTART●5652 ARTACTECTER●5652 ARTACTECTERCTINTER●5652 ARTACTECTERT●5652 ARTACTECTERCTINTER●5652 ARTACTECTITIC电子和计算机技术II●7197 BIM体系结构●7200电力和电动机的基础●7202制造原理和设计●7223机械设计Capstone●7351计算机科学中的主题●7352 7361计算机科学●7361电子基础●7362电子基础●7362电子技术●7362电子capstone
数字时代的数学教育(MEDE)系列探讨了数字技术支持数学教学和网络Geners学习的方式,也关注教育辩论。每卷都将在数学教育中解决一个特定问题(例如,视觉数学和网络学习;基于包容性和社区的电子学习;在数字时代的教学),以探索在数字技术的情况下探索有关教学和学习数学的基本假设。本系列旨在吸引各种各样的读者,包括:数学教育研究人员,数学家,认知科学家和计算机科学家,教育研究生,政策制定者,教育软件开发人员,管理人员和教师实践者。除其他外,本系列发表的高质量科学工作将解决与新一代数学学生的教学法和数字技术适用性有关的问题。该系列还将为读者提供更深入的了解,以了解创新的教学实践如何出现,进入课堂,并塑造成长为技术的年轻学生的学习。该系列还将介绍如何桥接理论和实践,以增强当今学生的不同学习方式,并将他们的动力和自然兴趣转变为对有意义的数学学习的额外支持。该系列为发现数字技术对学习成果的影响及其整合到有效的教学实践中的影响提供了机会;数学教育软件在教学和课程转换方面的潜力;以及数学电子学习的力量,是包容性和基于社区的,但个性化和实践的力量。
高质量的高分辨率(HR)磁共振(MR)图像提供了更详细的信息,可用于可靠的诊断和定量图像分析。深度综合神经网络(CNN)显示出低分辨率(LR)MR图像的MR图像超分辨率(SR)的有希望的Abil。LR MR图像通常具有一些vi-Sual特征:重复模式,相对简单的结构和信息较少的背景。大多数以前的基于CNN的SR方法同样处理空间像素(包括背景)。他们也无法感知输入的整个空间,这对于高质量的MR IMPIMSR至关重要。为了解决这些问题,我们提出了挤压和激发推理注意网络(SERAN),以获得MR Image SR。我们建议从输入的全球空间信息中挤出注意力,并获得全球描述符。这样的全球描述符增强了网络专注于MR图像中更具信息区域和结构的能力。我们在这些全球描述符之间进一步建立了关系,并提出了引起关注的原始关系。全球描述符将以学习的关注进一步确定。为了充分利用汇总信息,我们通过学习的自适应注意向量自适应地重新校准了特征响应。这些注意向量选择一个全局描述符的子集,以补充每个空间位置以进行准确的细节和纹理重新分解。我们通过残留的缩放提出挤压和激发注意力,这不仅可以稳定训练,而且还使其对其他基本网络的灵感变得非常灵活。广泛的例证显示了我们提出的Seran的有效性,该塞伦在定量和视觉上清楚地超过了基准标记的最新方法。
