2月5日,星期三(15H45)在B4.233室 +组织(14')2月6日,星期四(15h45)动机(72')2月11日,星期二(15H45)介绍(15H45)介绍(170')2月12日,星期三(170')在2月19日(星期三)(15h45)在P3E11开会1(2月24日)开始作业1(于2月24日);开始家庭作业2(在3月3)2月20日,星期四(15H45)建模(106')2月26日,星期三(15H45)在B4.233举行的会议;讨论家庭作业1 2月27日,星期四(15H45)语言(128'),星期二,3月。4(15H45)3月,3月。5(15H45)在B4.233举行的会议;讨论家庭作业2,开始作业3(将于3月 23)3月,星期三 12(15H45)在B4.233举行的会议; 3月13日(15H45)的开始项目工作(119')5(15H45)在B4.233举行的会议;讨论家庭作业2,开始作业3(将于3月23)3月,星期三12(15H45)在B4.233举行的会议; 3月13日(15H45)的开始项目工作(119')12(15H45)在B4.233举行的会议; 3月13日(15H45)的开始项目工作(119')
抽象将公共卫生行为作为使他人受益而不是自我的行为可以增加成年人的行为吸收。然而,在疫苗接种环境中这种消息传递影响的结果不同,目前尚不清楚孩子如何理解疫苗接种的社会和道德含义。在这项研究中,我们以假想的疫苗样行为介绍了学龄儿童(n = 60),并操纵他们是使自我或他人受益,以及他们是否预防低严重性损害。我们发现,当儿童防止严重性损害高度严重性时,他们很容易认可这些行为,并且行为的受益者不会影响儿童的认可。年轻的孩子认为,无论他们受到谁的保护,疫苗样行为在道德上都是重要的。但是,随着孩子的年龄增长,他们在保护他人时以道德术语来思考类似疫苗的行为。我们讨论了有关疫苗接种的沟通如何影响儿童对他人的推理的潜在影响。
•分数:MMLU的90.8%,MMLU-PRO的84.0%,GPQA钻石的71.5%。•胜过DeepSeek-v3,但尾随OpenAI-O1-1217。•与其他封闭式模型相比,教育任务擅长于教育任务。SimpleQA:胜过DeepSeek-V3,展示了强大的事实查询处理。
人工智能(AI)在近几十年来取得了巨大的进步,由神经网络和象征性推理系统的进步提供支持。神经网络从数据中获得学习模式,在图像识别,自然语言处理和自动驾驶等任务中取得突破。另一方面,符号推理系统为逻辑推理和知识表示提供了结构化的,基于规则的框架,使其非常适合需要解释性,概括性和解释性的域。但是,这些范式通常是孤立地运行的,当面对需要强大的学习能力和逻辑推理的任务时,会导致局限性。本文探讨了神经符号AI的新兴领域,该领域试图将神经网络和象征性推理整合到统一的框架中,克服了它们各自的缺点并在AI开发中解锁了新的可能性。
摘要新一代语言模型的出现因其卓越的理解和人类语言生成能力而彻底改变了自然语言处理(NLP)的领域。chatgpt成为一个基本模型,具有出色的优势。DeepSeek最近成为NLP的最新进步,在纯文本生成工作,语义分析和上下文依赖语言建模能力中表现出巨大的潜力。该研究调查并比较了DeepSeek和Chatgpt在评估主要应用于南亚阿拉伯语学习者的成人L2(第二语言)采集错误时的表现。使用此前提,我们旨在评估其在检测语言不准确性(形态学,语法,语义)和诊断L1(第一语言)的疗效方面的功效。方法包括对非本地阿拉伯语句子的错误分析,两个模型的比较评估以及对推理深度的对比评估。结果表明,DeepSeek在上下文驱动的错误检测(例如检测SOV单词订单转移时)的情况明显好得多,并且ChatGpt提出了更具主导性的相关反馈。但是,两者都需要微调提示来引入与语义/务实错误有关的反馈,例如缺少文章和方言不匹配。的贡献包括将AI工具集成到L2教育学的建议,强调对比度的演习和社会语言意识,以及针对L1靶向错误概况的培训AI的建议。这项研究将AI集成到针对成人L2学习者的可扩展解决方案的语言教学中,同时指出了模型中所需的改进。关键字:DeepSeek,Chatgpt,LLMS,母语影响(MTI),第二语言获取(SLA),AI辅助错误检测,对比语言学
推理和问答作为人类的基本认知功能,一直是人工智能面临的重大障碍。虽然大型语言模型(LLM)取得了显著的成功,但将外显记忆与结构化推理能力相结合仍然是一个持续的难题。可区分神经计算机(DNC)模型虽然在一定程度上解决了这些问题,但仍然面临着算法复杂度高、收敛速度慢、鲁棒性有限等挑战。受大脑学习和记忆机制的启发,本文提出了一种基于记忆转换的可区分神经计算机(MT-DNC)模型。MT-DNC 在 DNC 框架内整合了工作记忆和长期记忆,使这些记忆系统之间能够自主转换获得的经验。这有助于有效地提取知识并增强推理能力。实验结果
2。过程标准描述了期望学生参与内容的方式。在每个年级和课程中列出的知识和技能开始时的过程标准的放置是有意的。过程标准将其他知识和技能编织在一起,以便学生可以成功地解决问题,并在日常生活中有效,有效地使用数学。流程标准在每个年级和课程中都集成。在可能的情况下,学生将将数学应用于日常生活,社会和工作场所中产生的问题。学生将使用解决问题的模型,该模型结合了给定信息,制定计划或策略,确定解决方案,证明解决方案并评估解决问题的过程以及解决方案的合理性。学生将选择适当的工具,例如真实的对象,操纵性,纸和铅笔,以及技术和技术,例如精神数学,估计和数字意义,以解决问题。学生将使用符号,图表,图形和语言等多种表示形式有效地传达数学思想,推理及其含义。学生将使用数学关系来生成解决方案并进行连接和预测。学生将分析数学关系以连接和交流数学思想。学生将使用书面或口头交流中精确的数学语言来展示,解释或证明数学思想和论据。
关键词;UTBB 28nm FD-SOI、模拟 SNN、模拟 eNVM、eNVM 集成。2. 简介基于新兴非易失性存储器 (eNVM) 交叉开关的脉冲神经网络 (SNN) 是一种很有前途的内存计算组件,在边缘低功耗人工智能方面表现出卓越的能力。然而,eNVM 突触阵列与 28nm 超薄体和埋氧全耗尽绝缘体上硅 (UTBB-FDSOI) 技术节点的共同集成仍然是一个挑战。在模拟脉冲神经网络 (SNN) 中,输入神经元通过一电阻一晶体管 (1T1R) 突触与输出神经元互连,计算是通过突触权重将电压尖峰转换为电流来完成的 [1]。神经元将尖峰积累到预定义的阈值,然后产生输出尖峰。神经元区分和容纳大量突触和输入脉冲的能力与神经元放电阈值的电压摆幅直接相关。这主要取决于膜电容、突触电荷的净数量和低功率神经元的阈值 [2]。
我们介绍了第一代推理模型,即DeepSeek-R1-Zero和DeepSeek-R1。DeepSeek-R1-Zero,一种通过大规模增强学习(RL)训练的模型,没有超级微调(SFT)作为初步的步骤,表现出显着的推理能力。通过RL,DeepSeek-R1-Zero自然出现,具有许多强大而有趣的推理行为。但是,它遇到了挑战,例如不良的可读性和语言混合。为了解决这些问题并进一步提高了推理性能,我们引入了DeepSeek-R1,该问题在RL之前结合了多阶段培训和冷启动数据。DeepSeek-R1在推理任务上实现与OpenAI-O1-1217相当的性能。为了支持研究社区,我们开放源DeepSeek-R1-Zero,DeepSeek-R1和六种密集的型号(1.5b,7b,8b,8b,14b,32b,32b,70b),根据Qwen和Llama蒸馏出了DeepSeek-R1。