我们介绍了第一代推理模型,即DeepSeek-R1-Zero和DeepSeek-R1。DeepSeek-R1-Zero,一种通过大规模增强学习(RL)训练的模型,没有超级微调(SFT)作为初步的步骤,表现出显着的推理能力。通过RL,DeepSeek-R1-Zero自然出现,具有许多强大而有趣的推理行为。但是,它遇到了挑战,例如不良的可读性和语言混合。为了解决这些问题并进一步提高了推理性能,我们引入了DeepSeek-R1,该问题在RL之前结合了多阶段培训和冷启动数据。DeepSeek-R1在推理任务上实现与OpenAI-O1-1217相当的性能。为了支持研究社区,我们开放源DeepSeek-R1-Zero,DeepSeek-R1和六种密集的型号(1.5b,7b,8b,8b,14b,32b,32b,70b),根据Qwen和Llama蒸馏出了DeepSeek-R1。
摘要我们介绍了自我监控的推理时间干预(SMITIN),这是一种使用分类探针来控制自回归的生成音乐变压器的方法。这些简单的逻辑回归探针通过使用表现出特定的音乐性状(例如,鼓声/不存在鼓或真实/合成音乐)的小型音频示例对变压器中每个注意力头的输出进行了训练。然后,我们将注意力头转向探针方向,以确保生成模型输出捕获所需的MUSICAL性状。此外,我们监视探针输出,以避免在自回归产生中添加过量的干预措施,这可能会导致时间上不一致的音乐。我们在音频延续和文本到音乐应用程序中客观和主观验证结果,证明了将控件添加到大多数音乐家的重新培训甚至灌感都是不切实际的大型生成模式中的能力。建议的干预方法的音频样本可在我们的演示页面上
自主代理人与人的互动越来越集中于适应其不断变化的偏好,以改善现实世界任务中的援助。有效的代理必须学会准确地推断出通常隐藏的人类目标,才能很好地进行协作。但是,现有的多代理增强学习(MARL)环境缺乏严格评估这些代理人学习能力所需的必要属性。为此,我们介绍了Color G Rid,这是一种具有可定制的非平稳性,不对称性和奖励结构的新型MARL环境。我们调查了独立的近端政策选择(IPPO),一种最先进的(SOTA)MARL算法,在C olor G ride和通过广泛的消融中找到,尤其是在“人类和“人类较低”的“领导者”代理之间,尤其是在“领导者”中同时进行非平稳和不对称目标的助理代理人,由color color c olor is i i i i i i i i i i i i i i i i i i Is i i是。为了支持未来的MARL算法,我们在https://github.com/andreyrisukhin/colorgrid上发布了环境代码,模型检查点和轨迹可视化。
网络神经科学对于理解复杂大脑(障碍)功能和认知的原理和机制至关重要。在这种情况下,全脑网络建模(也称为虚拟大脑建模)将大脑动力学计算模型(放置在每个网络节点)与单个大脑图像数据(以协调和连接节点)相结合,从而增进我们对大脑复杂动力学及其神经生物学基础的理解。然而,考虑到不同的时空分辨率,仍然迫切需要自动模型反演工具来估计大规模和跨神经成像模式的控制(分叉)参数。本研究旨在通过引入一个灵活、综合的工具包来解决这一差距,该工具包用于在虚拟大脑模型上进行有效的贝叶斯推理,称为虚拟大脑推理(VBI)。该开源工具包提供快速模拟、特征提取分类、高效数据存储和加载以及概率机器学习算法,从而能够从非侵入性和侵入性记录中进行生物物理可解释的推断。通过计算机测试,我们证明了常用全脑网络模型及其相关神经成像数据的推断的准确性和可靠性。VBI 显示出通过不确定性量化来改善网络神经科学中的假设评估的潜力,并通过增强虚拟大脑模型的预测能力为精准医学的进步做出贡献。
由染色体9和22之间的相互易位产生的异常嵌合BCR-ABL癌蛋白表现出构成性高激酶活性。活化的BCR-ABL1促进了慢性髓样白血病(CML)细胞的增殖,并通过激活多种下游信号通路来阻碍其患有凋亡的能力[1-2]。酪氨酸激酶抑制剂(TKIS),例如伊马替尼(IM)和尼洛替尼,已被证明在慢性期有效治疗CML。然而,大约15-20%的患者,尤其是处于疾病加速阶段的患者,对IM产生了抵抗力,并最终经历了复发或爆炸危机的进展[3-8]。大约50%的TKI抗性病例是BCR-ABL依赖性的,这是由ABL激酶结构域中的点突变或BCR-ABL基因的扩增引起的,该基因导致BCR-ABL激酶活性的重新激活[9]。其余的耐药性涉及与细胞增殖和/或癌症生存有关的各种关键信号通路。CML从慢性阶段到高级阶段的进展是由BCR-ABL依赖性和独立机制驱动的,这也表现出对特定TKI的反应。
手卫生对于预防感染至关重要,但是在医疗保健,学校和社区中保持合规性仍然具有挑战性。尽管有强有力的证据,但由于认知障碍,人手不足,资源有限和抗菌素耐药性而导致失误。行为科学强调了时间限制和影响依从性的认知偏见,其合规率低至40%。Nudge理论通过使用视觉或听觉提示(如听觉提示)来鼓励手动卫生而不施加严格的法规,从而提供了有希望的解决方案。最近的创新将人工智能(AI)与轻推,通过实时反馈提高合规性。AI驱动的系统,例如智能分配器和可穿戴设备,在关键时刻使用视觉或听觉提示提供了提醒。例如,当医护人员进入患者的房间,促使手动卫生时,分配器可能会点亮或发出声音。研究表明,这些AI驱动的干预措施显着提高了依从性,在某些情况下,利率最高为30%。AI还可以分析不合规的模式,在高风险时期内部署个性化的轻推。将轻推理论与游戏化(例如基于团队的竞争和奖励)相结合,进一步加强了积极的习惯。但是,在印度等国家实施AI解决方案面临挑战,包括资源有限,对新技术的抵抗和文化障碍。尽管有障碍,但将AI驱动的轻推与行为策略相结合有可能改变手部卫生实践。这种方法促进了问责制,降低了感染率,并通过将遵守符合纳入日常工作,从而确保更安全的患者护理,为感染控制的可持续改善铺平了道路。
有各种模型,涉及人类大脑中知识的生成,包括语义网络模型。尽管已广泛研究了该模型,甚至提出了计算模型,但是由于不同类型的知识的产生各种限制和不官方,它的应用仅限于语义知识,因为它是根据语义记忆和声明性知识形成的,并且在解释各种程序和条件知识方面具有许多限制。鉴于为知识产生提供合适的模型的重要性,尤其是在改善人类认知功能或构建智能机器的领域,改善知识生成中的现有模型或提供更全面的模型具有很大的重要性。在当前的研究中,基于大脑的自由能原理,研究人员提出了一个模型,用于产生三种类型的声明性,程序性和条件知识。在解释不同类型的知识的同时,该模型能够根据概率数学和动作感知过程(主动推论)计算并从刺激中生成概念。所提出的模型是无监督的学习,可以使用不同的刺激作为生成模型来更新自身,可以生成无监督接收的刺激的新概念。在此模型中,主动推理过程用于程序和条件知识的发生,并且感知过程用于生成声明性知识。
摘要定量推理(QR)是本科生物学教育的关键技能。尽管如此,许多学生仍在与QR斗争。在这里,我们使用学生的理论框架来调查为什么有些学生在入门生物学实验室中与QR斗争。在此框架下,学生在给出了新的信息和数据时注意到的内容会如何处理此信息并将其与其他事件联系起来以形成新的概念。学生必须在精神上隔离给定的功能,创建这些功能的心理记录,并确定与现有知识相关的功能或对象。因此,识别这些特征或对象至关重要,因为它们构成了学习的基础。我们在涉及QR的介绍性生物学实验室中对小组进行了观察,该实验室涉及QR,该实验室告知了后续访谈,以检查学生注意到的内容,注意事项的水平/相关性以及塑造学生注意到的因素。我们发现,有些学生注意到更多的感知特征,通常集中在较小的相关趋势和特征上,而另一些学生则注意到更深入,更相关的模式,这些模式有助于概念上的感官。此外,我们发现了多种因素,包括学生对QR和生物学的态度,这些因素构成了学生的注意。我们以对教师和生物学教育研究界的影响得出结论。
1月1日,田纳西州HB 1891年1月1日,要求社交媒体公司验证试图创建和维护帐户的用户年龄。要求平台获得18岁以下未成年人的父母同意,并为这些用户执行更严格的隐私和安全措施。该法律旨在通过确保社交媒体公司遵守这些新法规来保护未成年人免受潜在的在线危害。还有其他三个通过并将生效。佛罗里达州,我之前提到的HB 3,要求社交媒体平台验证用户的年龄,获得18岁以下用户的父母同意,保护未成年人的个人数据,限制其对有害内容的影响。佐治亚州的SB 351,被称为《 2024年社交媒体法案保护佐治亚州的孩子》,要求社交媒体平台为用户实施年龄验证流程,要求父母同意未成年人创建帐户,并限制社交媒体在学校中的使用。
摘要 — 在多任务远程推理系统中,智能接收器(例如,指挥中心)使用从多个远程源(例如,边缘传感器)接收的数据特征执行多个推理任务(例如,目标检测)。在这些系统中促进及时推理的关键挑战来自 (i) 源的计算能力有限,无法从其输入中产生特征,以及 (ii) 信道的通信资源有限,无法同时将特征传输到接收器。我们开发了一种新颖的计算和通信协同调度方法,该方法确定特征生成和传输调度,以最大限度地减少受这些资源限制的推理错误。具体来说,我们将协同调度问题表述为弱耦合马尔可夫决策过程,以基于信息时代 (AoI) 的及时性来衡量推理错误。为了克服其 PSPACE 难度,我们分析了该问题的拉格朗日松弛法,从而得出增益指标,用于评估每个潜在特征生成-传输调度操作的推理误差的改善。在此基础上,我们开发了一种最大增益优先 (MGF) 策略,我们证明,随着推理任务数量的增加,该策略对于原始问题而言是渐近最优的。实验表明,MGF 相对于不同任务、渠道和来源的基线策略获得了显着的改进。