引用:Jia-Richards, Oliver 和 Lozano, Paulo C. 2021。“带空间推进系统分级的圆形轨道转移分析指导。”Acta Astronautica,179。
Blaise Ravelo 1,IEEE 会员,Mathieu Guerin 2,IEEE 会员,Jaroslav Frnda 3,4,IEEE 高级会员,Lala Rajaoarisoa 5,IEEE 会员,以及 Wenceslas Rahajandraibe 2,IEEE 会员 1 南京信息工程大学电子信息工程学院,江苏南京 210044 2 艾克斯-马赛大学、法国国立科学研究院、土伦大学,IM2NP UMR7334,13007 马赛,法国 3 日利纳大学交通运输与通信运营与经济学院定量方法与经济信息学系,01026 日利纳,斯洛伐克 4 奥斯特拉发 VSB 技术大学电气工程与计算机科学学院电信系,70800 奥斯特拉发,捷克共和国 5 IMT Nord Europe,里尔大学,数字系统中心,F-59000 里尔,法国
5000 万美元的里程碑是继 2024 年 5 月与赛诺菲签署协议时支付首笔预付款之后的第一个里程碑。在这笔付款之后,还有与 Novavax 合作的 COVID-19 疫苗相关的其他潜在里程碑,最高可达 3 亿美元,这些里程碑将在获得收益的期间确认。除了独立 COVID-19 疫苗的里程碑外,该协议还包括赛诺菲开发的组合产品,包括 Novavax 的 COVID-19 疫苗,这为 Novavax 在未来里程碑中额外获得高达 3.5 亿美元的潜在机会。此外,独立的 COVID-19 销售额和任何赛诺菲组合产品的潜在销售额都将使 Novavax 获得持续的分级特许权使用费。此外,Novavax 还将有资格获得赛诺菲利用 Matrix-M 佐剂研发的前四种产品高达 2 亿美元的付款,以及此后包括 Matrix-M 在内的每种产品高达 2.1 亿美元的里程碑付款,外加所有赛诺菲利用 Matrix-M 产品的持续特许权使用费。
,从旧空间到新空间以及越来越多的商业化的过渡对太空飞行,通常对离子推进器的电动推进(EP)产生了重大影响。离子推进器被用作空间中的主要推进系统。本文描述了与新空间相关的这些变化如何影响对EP系统开发很重要的各个方面。从对太空飞行和EP系统技术的发展的历史概述开始,提供了许多与EP和基础技术的重要任务。我们讨论的重点是射频离子推进器作为网格离子发动机家族的杰出成员的技术。基于此讨论,我们概述了重要的研究主题,例如寻找替代推进剂,基于新颖插入材料的可靠中和概念的发展以及有希望的无中和无中和推进概念。此外,还讨论了推进器建模和测试设施要求的各个方面。更重要的是,我们解决了空间电子设备的各个方面,即高效的电子组件的发展以及电磁兼容性和辐射硬度的方面。本文以EP系统与航天器的相互作用的介绍结束。
急性髓系白血病 (AML) 是一种恶性程度较高的血癌,预后较差。尽管同种异体造血干细胞移植和高剂量化疗等治疗方法在某些情况下可能治愈年轻患者,但复发和治疗相关毒性等挑战仍然十分严峻。联合疗法一直是 AML 治疗的基石,通过利用多种药物的协同作用来提高疗效。然而,AML 的高毒性水平和遗传异质性使确定有效且普遍适用的药物方案变得复杂。为了应对这些挑战,我们引入了 CoPISA 工作流程(组合药物的蛋白质组整体溶解度/稳定性改变分析),这是一种创新方法,旨在专门研究联合疗法中的药物-靶标相互作用。CoPISA 可检测仅在两种药物一起使用时发生的蛋白质溶解度/稳定性变化,揭示单一药物治疗无法实现的协同机制。我们将这种方法应用于我们小组之前推出的两种高效低毒的 AML 药物组合:LY3009120-sapanisertib (LS) 和 ruxolitinib-ulixertinib (RU)。CoPISA 工作流程利用先进的蛋白质组学工具来研究主要和次要靶标效应,从而更深入地了解联合疗法如何影响多种信号通路以克服耐药性。此外,我们提出了一个称为“联合抑制”的新概念,其中药物的联合作用会诱导单个药物无法实现的生物反应。这种方法为组合疗法的设计带来了变革,并为 AML 和其他复杂疾病的更有效治疗提供了新方向。
摘要该特定论文探讨了空间“电推进系统”如何成为最有前途的未来派航天器推进技术之一,比化学和其他推进技术具有独特的优势。尽管共享某些相似之处,但空间航天器和空中飞行器的推进系统却不同,并且在这里探索了从下层大气到上层大气层的可能性的战略和系统方法,但在这里也很好地强调了这一点,尽管这也很简短。此外,关于特定的脉冲和产生的推力,在常规推进系统与电气推进系统之间进行了简要比较。此外,简要讨论了陆地气氛中不同的变异条件,以解决空间电气推进系统的各种挑战,并为这些挑战寻找新颖和创新的解决方案。还提到了当前情况下电气推进系统和各种推进器的不同类型的应用。主要重点是电力推进系统用于低空地轨道卫星的可行性,这些卫星主要用于地球观察,土地,水资源映射,气候警告系统,地球科学等。目前,从战略上开始进入电气推进系统及其在地球上层大气中的关键作用。虽然,但是,空间电动推进系统的其他各种应用,例如中高度的地球轨道卫星,主要用于航行目的,用于电信的地理卫星等,太空运输 - 发射器踢阶段,太空踢阶段,太空科学 - 互动空间探索等是这些特定纸张的范围,无法探索这些令人兴奋的范围。尽管如此,诸如卫星重量减轻,发射成本的减少,卫星的效率和功能的提高,空间碎屑数量减少,无毒绿色推进剂的使用减少,也将在该论文的范围之外讨论。
关键的创新见解:•这些系统可以彻底改变侦察,搜索和救援以及战术操作,并通过自然系统的流动性和适应性运行•能源收集和扩展的耐力自我维持系统:结合太阳能电池板和能量储备的技术,可以使无人驾驶汽车无限制地运行。•创建持续的监视平台和通信继电器,重新定义战略资产部署。
1。van Dijk El,Jaszczyszyn Y,Naquin D,ThermesC。测序技术的第三次革命是测序技术的简短历史。遗传学趋势2018; 34:666–81。 2。 di Tommaso P,Chatzou M,Floden EW,Barja PP,Palumbo E,NotredameC。NextFlow启用可重现的计算工作流程。 NAT Biotechnol 2017; 35:316–9。 3。 Chen Y,Sim A,Wan YK,Yeo K,Lee JJX,Ling MH等。 与BAMBU的长阅读RNA-seq数据中的上下文感知的转录本定量。 NAT方法2023; 20:1187–95。 4。 Wucher V,Legeai F,HédanB,Rizk G,Lagoutte L,Leeb T等。 feefnc:长期非编码RNA注释及其应用于狗转录组的工具。 核酸研究2017; 45:1-12。遗传学趋势2018; 34:666–81。2。di Tommaso P,Chatzou M,Floden EW,Barja PP,Palumbo E,NotredameC。NextFlow启用可重现的计算工作流程。NAT Biotechnol 2017; 35:316–9。3。Chen Y,Sim A,Wan YK,Yeo K,Lee JJX,Ling MH等。 与BAMBU的长阅读RNA-seq数据中的上下文感知的转录本定量。 NAT方法2023; 20:1187–95。 4。 Wucher V,Legeai F,HédanB,Rizk G,Lagoutte L,Leeb T等。 feefnc:长期非编码RNA注释及其应用于狗转录组的工具。 核酸研究2017; 45:1-12。Chen Y,Sim A,Wan YK,Yeo K,Lee JJX,Ling MH等。与BAMBU的长阅读RNA-seq数据中的上下文感知的转录本定量。NAT方法2023; 20:1187–95。4。Wucher V,Legeai F,HédanB,Rizk G,Lagoutte L,Leeb T等。feefnc:长期非编码RNA注释及其应用于狗转录组的工具。核酸研究2017; 45:1-12。
摘要木薯(Manihot esculenta crantz)是一种关键的淀粉根作物,在全球范围内就粮食作物的意义排名第六,并为居住在热带地区的8亿个人提供了维持。超出其作为食物来源的关键作用,木薯也是生物材料的基本水库。木薯主要在肥沃的,低雨后的环境中蓬勃发展,面临着各种挑战,包括对病毒疾病的易感性,快速的后后恶化以及与氰基糖苷相关的潜在毒性。用于增强或引入特定性状的常规育种方法,尽管有效,但尤其是耗时的,促使人们探索了替代技术。基因组编辑工具,以CRISPR/CAS9系统为例,由于其简单性,成本效益和效率而提供了有希望的途径。这项全面的评论批判性地研究了基因组编辑在木薯中的应用,重点是增强关键特征,例如淀粉质量,氰化物排毒和对疾病的耐药性。此外,它精心探讨了该领域遇到的挑战,提供潜在的解决方案,并调查了先进的技术,包括基础编辑和质量编辑,这对推进木薯育种的努力保持了巨大的希望。
环境中有毒金属面临的日益增长与工业化,城市化和气候变化直接相关。这些过程加剧了镉,铅和汞等污染物的全球分布,从而造成了巨大的公共卫生风险。有毒金属现在通过包括空气,水和土壤在内的各种途径渗透生态系统,促进直接和长期健康影响。已经建立了镉在诱导氧化应激,DNA损伤和癌症的作用,特别是在居住在工业区域中的脆弱社区中。同样,铅暴露与神经毒性,认知功能受损和癌症风险增加有关。使用模型生物(例如酵母)对金属稳态的研究已经提出了我们对细胞如何对毒性暴露反应的理解,并通过生物技术干预措施引起了实际溶液。可持续的补救策略纳入了绿色化学,植物修复和循环经济原则对于解决环境污染至关重要。更强的监管框架的发展对于减少有毒金属暴露和促进公共卫生至关重要。解决这些问题需要分子生物学家,环境科学家,公共卫生专家和决策者之间的跨学科合作。本评论重点介绍了环境健康研究的未来,并着重于创建持久的预防解决方案,这些解决方案不仅可以减轻当前的污染,而且还降低了未来环境毒素的风险。©2025 Olaniyan S.这是一篇开放式访问文章,该文章是在创意共享归因4.0国际许可(www.creativecommons.org/licenses/4.0)下分发的,只要适当引用任何原始工作,就可以在任何媒介中进行无限制的使用,分发,分发和复制。