表 5-1. 爆炸物实验室操作的安全防护罩 ...................................................................................... 39 表 5-2. 可形成有机过氧化物的部分 .............................................................................................. 41 表 5-3. 未达到浓度 a 时可形成潜在爆炸性过氧化物的化学品 ............................................................................. 42 表 5-4. 达到浓度 a、b 时可形成潜在爆炸性过氧化物的化学品 ............................................................................. 43 表 5-5. 自聚合的化学品 a ............................................................................................................. 44 表 5-6. DOT 危险分类系统 ............................................................................................................. 51 表 5-7. 分类代码 ............................................................................................................................. 52 表 5-8. 存储兼容性混合图表 a、b、c、d、e、f、g、h、i、j ............................................................................. 54 表 5-9.危险类别 1.1 有人居住建筑和公共交通路线距离 .............................................................................. 61 表 5-10. 危险类别 1.1,线路内距离 .............................................................................................. 65 表 5-11. 危险类别 1.1,与 ECM 的线路内距离 ............................................................................. 68 表 5-12. 危险类别 1.1 的仓库间危险因素 ............................................................................. 71 表 5-13. 当 K = 1.1 时,危险类别 1.1 的仓库间危险因素和距离,
太阳能航行为立方体规模,无推进剂的航天器技术提供了机会,该技术可以通过传统方法实现长期和长距离任务。太阳帆使用从帆表面反射的阳光光子中的线性动量转移。要推动航天器,不需要机械运动的部件,推进器或推进剂。但是,态度控制或方向仍然使用涉及反应轮和推进剂弹射的传统方法进行执行,这严重限制了任务寿命。例如,即将执行的任务将太阳帆与最先进的推进剂弹出气体系统采用的现有最先进的解决方案的现状。在这里,使用加油推进器的使用限制了任务的寿命。为了解决有限的任务寿命问题,利用反光控制设备的无推进剂态度控制项目团队正在使用薄材料(一种光学膜)进行无向态度控制,这是一种光学膜,可从透明到反射性的电气切换。该技术基于聚合物分散的液晶(PDLC),该液晶允许在使用电压时进行此切换。这项技术消除了推进剂的需求,这在改善性能和寿命的同时降低了体重和成本。
提出了用于推进剂罐加压的分析模型。它允许预测导弹操作过程中推进剂罐中储罐气压,温度,重量,体积和其他相关参数的预测,当推进剂可能挥发并且其蒸气可能解散时。最初的加压是从惰性气体加上推进剂蒸气压的。可以通过额外的惰性气体或自含量(自动)气体或两者兼而有之,可以通过推进剂流出期间的其他加压。在气相和液相之间,气相和储罐壁之间以及储罐壁和大气之间考虑传热。用于固定导弹或飞行中的导弹的外部传热。质传质被考虑用于气体液体界面处的表面凝结或蒸发,用于在液相内进行大量沸腾,以及在气相内的云凝结。
有几本书涉及炸药、推进剂和烟火技术,但最近出现的高能材料 (HEM) 的最新信息大多以研究/评论论文的形式散布在文献中。本书是第一本将过去 50 年来文献中积累的材料知识与先进材料的最新发展精心融合在一起的书,并从最终用途的角度阐述了它们的潜力。本书包含六个章节。本书第一章介绍了炸药的显著/基本特征、军用炸药的额外要求及其应用(军事、商业、太空、核能和其他),第二章根据炸药的特殊特性重点介绍了当前和未来炸药的现状。此外,本章还重点介绍了该领域未来的研究范围。第 3 章主要介绍了炸药及其配方的加工和评估的重要方面。第 4 章介绍了广泛用于各种军事和太空应用的推进剂。本章的主要内容致力于高性能和环保氧化剂 (ADN 和 HNF)、新型粘合剂(如丁苯、ISRO 多元醇和其他最先进的高能粘合剂 [GAP、NHTPB;聚(NiMMO)、聚(GlyN)等)的不同方面,高能增塑剂(BDNPA/F、Bu-NENA、K-10 等)以及其他成分,这些成分可能在增强未来推进剂在各种任务中的性能方面发挥关键作用。本章还包括火箭推进剂的抑制和火箭发动机的绝缘及其最新发展。第 5 章讨论了构成爆炸物和推进剂相关任务不可或缺的烟火技术,而第 6 章讨论了对所有在高能材料 (HEM) 领域工作的人来说至关重要的爆炸物和化学安全。JP Agrawal 博士是国际公认的著名爆炸物和聚合物科学家,也是一位出色的作家,发表了大量研究成果。他在书中所写的丰富经验和国际高能材料知识是新一代高能材料科学家和火箭技术人员的宝贵财富。