,从旧空间到新空间以及越来越多的商业化的过渡对太空飞行,通常对离子推进器的电动推进(EP)产生了重大影响。离子推进器被用作空间中的主要推进系统。本文描述了与新空间相关的这些变化如何影响对EP系统开发很重要的各个方面。从对太空飞行和EP系统技术的发展的历史概述开始,提供了许多与EP和基础技术的重要任务。我们讨论的重点是射频离子推进器作为网格离子发动机家族的杰出成员的技术。基于此讨论,我们概述了重要的研究主题,例如寻找替代推进剂,基于新颖插入材料的可靠中和概念的发展以及有希望的无中和无中和推进概念。此外,还讨论了推进器建模和测试设施要求的各个方面。更重要的是,我们解决了空间电子设备的各个方面,即高效的电子组件的发展以及电磁兼容性和辐射硬度的方面。本文以EP系统与航天器的相互作用的介绍结束。
简介:向后导向的电阻是沿个人行走运动相反方向施加的电阻。在目标速度行走过程中逐步应用向后导向的电阻,使自适应电动机控制能够保持这种速度。在拆分步行过程中,必须采用电动机控制策略,使该人能够跟上两条皮带以保持其在跑步机上的位置。应用渐进式抵抗时,这种情况变得更加具有挑战性,因为每个肢体都需要适应更大的阻力以维持位置。我们建议旨在用每个肢体改变相对推进力的策略可以解释使用的运动控制策略。这项研究旨在确定推进力动力学的变化,这些动力学使个人在仪器脱离皮带跑步机上行走时可以保持自己的位置,并逐渐增加向后定向的电阻。
LM2500 船用燃气轮机及其相关工程控制系统为海军的水面战舰提供主要推进力,包括 FFG 7 OLIVER HAZARD PERRY 级、CG 47 TICONDEROGA 级、DDG 51 ARLEIGH BURKE 级和 LCS 级。LM2500 由两个主要子组件组成:燃气发生器和动力涡轮部分。它通过高速联轴器与船舶传动系统相连。LM2500+ 船用燃气轮机及其相关工程控制系统为海军的两栖攻击舰提供主要推进力,包括 LHD-8 MAKIN ISLAND、LHA-6 和 LHA-7。LM2500+ 由两个主要子组件组成:燃气发生器和动力涡轮部分。它通过高速联轴器与船舶传动系统相连。两个发动机的控制系统均可提供本地和远程发动机操作。预算资金用于以下项目:
例如:技术人员按下键盘上的下一个键来操作远程监控系统、技术人员跳过检查表上的项目继续操作、船长不经意地按了主机“手动紧急停止按钮”(该按钮形状相同且位于“程序旁路按钮”的紧邻处),主机在运河中央紧急停止(请参阅“3-2-1 美国失去推进力事故案例:驾驶室中主机操作不当”)等。
例如:技术人员按下键盘上的下一个键来操作远程监控系统、技术人员跳过检查表的项目继续操作、船长不经意地按了主机“手动紧急停止按钮”(该按钮形状相同且位于“程序旁路按钮”的紧邻处),主机在运河中央紧急停止(请参考“3-2-1 美国失去推进力事故案例:驾驶室中主机操作不当”)等。
特点 • 技术 - 尺寸:长 99 米;直径:8.8 米 - 排水量:水面 4,700 吨 - 速度:水下约 25 节 - 推进力:核能。推进涡轮和电力推进马达运行 • 多用途武器 - F21 重型鱼雷(反舰和反潜) - MdCN 巡航导弹(对陆行动) - Exocet SM 39 导弹(反水面)
H 2 Quad 1000 完全集成且独立,包括所有必要的子系统,可显著延长飞行续航能力,并提供可靠高效的无人机推进力,绝对不会让您失望。燃料电池/电池混合动力系统已根据在多种不同平台配置中进行的大量无人机飞行测试进行了优化。它已在各种环境条件下进行了测试,可以满足作战无人机的严格要求。
重力辅助机动已应用于许多太空任务,用于在接近天体后改变航天器太阳中心速度矢量和轨道几何形状,从而节省推进剂消耗。可以利用额外的力量来改进机动,例如航天器与大气相互作用和/或推进系统产生的力;减少飞行时间并减少多次绕过次级天体的需要。然而,这些应用需要改进关键子系统,而这些子系统对于完成任务必不可少。本文对重力辅助的几种组合进行了分类,包括使用推力和空气动力的机动;介绍了这些变化的优点和局限性。分析了在高海拔地区实施低升阻比对航空重力辅助机动的影响,包括有推进力和无推进力。由于金星和火星与行星际任务的相关性、对探索的兴趣以及对其大气的了解,因此模拟了这些机动。在高海拔地区,低升阻比的气动重力辅助机动使金星的转弯角度增加了 10° 以上,火星的转弯角度增加了 2.5°。与重力辅助相比,这种机动使能量增益增加了 15% 以上。从技术成熟度来看,目前的太空技术发展水平使得在短期内应用高海拔气动重力辅助机动成为可能。关键词天体动力学;航天器机动;大气;轨道传播;空气动力;行星际飞行;绕行。
鱼类游动的力学原理十分有趣,因为它们在操纵过程中非常灵活,而且它们的运动具有高能效的特点。更好地了解鱼类的推进力可以设计出性能更佳的新型自主水下航行器,可用于海底勘探、环境监测或监视目的。这项研究旨在开发一种鳐鱼和蝠鲼的游泳动力学模型,重点关注其推进力的能效,这是仿生 AUV 设计的起点。在 OpenFOAM 中实现了牛鼻鳐游泳运动的 CFD 模型,使用重叠网格模拟鱼从静止加速到稳定速度的过程。为此分析实现了自定义代码,允许使用流体速度和压力求解前向游泳的 1 自由度动力学。相反,由于鳍变形而施加网格运动。已经对鳍运动的不同波长和频率进行了几次模拟,并研究了不同运动参数对游泳性能和尾流结构的影响。这项研究强调了尾流中存在逆卡门街现象,以及在波长较大的鳍运动中存在前缘涡流。此外,还以新颖的方式计算了自推进体的能量效率,在牛鼻鳐游泳的情况下,其能量效率非常高。