本报告中将“常规螺旋桨布置”这一术语应用于商用船舶船尾的螺旋桨安装。由于系统冗余的要求,DP 船舶使用双螺旋桨安装。大多数船形 DP 船舶(钻井船等)均采用这种布置。原动机(大多数应用中为电动机)通过减速齿轮和推进轴驱动螺旋桨。轴由船体内部的一个或多个轴承支撑。轴穿过船体由艉轴管组件完成,该组件包括两个轴承(油或水润滑)和一个轴密封。这种布置简单可靠。螺旋桨设计用于最大速度要求;DP 服务期间仅需要部分功率。船尾的空间允许安装直径相对较大的螺旋桨,该螺旋桨在系柱牵引(零流入速度)和低流速 DP 操作期间产生高比推力。
我们在这些年的大流行中问自己,我们该怎么做来帮助人民。答案非常简单,我们无事可做,只是等待灾难本身就会发生,并且自我保存是人类可以采用这种情况的最佳实践,因为我们从未为这种情况做好准备,因此我们实际上无法评估情况并获得最佳解决方案。,但幸运的是,我们现在有机会考虑种族的未来,我们可以将它们避免灭绝。现在要应对一些灭绝水平的威胁,例如大自然的大自小冲突,这可能会消灭恐龙时期发生的人口,我们必须考虑所有可能的最坏情况,以为我们的生存提供最佳解决方案。当“一旦我们确定没有其他可能出来的方式”
1 阿米蒂空间科学与技术研究所学生 2 阿米蒂空间科学与技术研究所教授 摘要 电子回旋共振 (ECR) 推进器正成为一种有前途的高效航天器推进技术,利用电子回旋共振现象产生推力。这篇全面的评论综合了该领域的关键进步、设计策略和持续挑战。ECR 推进器通过使用微波能量加热磁化等离子体中的电子来运行,从而产生高电离率和有利的推力功率比。与传统推进系统不同,ECR 推进器具有显着优势,包括更高的比冲和更低的燃料消耗,使其成为长时间太空任务的理想选择。本文深入探讨了 ECR 推进器设计的各个关键方面,例如天线配置、气体注入方法和磁场优化,重点介绍了这些因素如何影响整体性能。它还讨论了解决效率、寿命和功率传输等问题的最新实验结果和理论模型。此外,该评论还探讨了未来的发展方向,强调需要在材料和自动阻抗匹配方面取得进步,以提高可靠性和推力产生能力。通过这一分析,本文旨在全面了解 ECR 推力器,强调其成为未来太空探索有竞争力和可持续选择的潜力。关键词:电子回旋共振 (ECR) 推力器、等离子推进、电力推进技术、微波等离子体加速、推力器中的磁场配置、离子加速简介电子回旋共振 (ECR) 等离子推力器于 20 世纪 60 年代首次推出,利用电场和磁场加速等离子体,为航天器提供推力。与传统推力器不同,ECR 推力器无需电网,只需要一个电源,这使得它们在太空推进领域具有潜在的颠覆性作用 [4,10,14]。最近的进展主要集中在解决过去的实验限制、提高测量精度和优化各种推力器参数。等离子体物理学涵盖了在电离气体中观察到的各种现象,其应用范围涵盖自然现象、聚变研究和工业过程[22,30,35]。尽管存在这种多样性,但等离子体的本质可以描述为带电粒子和中性粒子在电、磁和电磁相互作用影响下的集体行为。在工业等离子体社区中,等离子推力器社区专注于开发用于
摘要 . 磁等离子体动力 (MPD) 推进器能够使用兆瓦 (MW) 的电力将准中性等离子体加速到高排气速度。这些特性使得此类设备值得考虑用于要求苛刻的长期任务,例如人类对火星或更远距离的探索。由于 MPD 推进器是正在进行的实验研究课题,而不是已开发的推进器,因此在系统和任务级别对其进行评估通常很困难。但是,为了评估 MPD 推进器在后续任务中的效用,需要对性能进行一些充分的表征,或者更确切地说,需要对性能进行预测,并定义系统级别以供分析使用。已经对自场 MPD 推进器的最新物理模型进行了检查、评估和重新配置,以供系统和任务分析师使用。物理模型允许根据可在实验室中测量的物理参数合理预测推进器性能。本文介绍了这些模型及其对未来 MPD 推进器设计的影响。
正如我们在科幻电影中不断看到的使用离子或电力推进进行星际太空旅行的情况一样,即使不是星际科学家也已经开始将这项技术视为星际技术的一种选择,它是高效燃料使用和电力的完美结合,它比任何其他技术都非常便宜和快捷。在物理学中,离子推进是航天器使用的一种电力推进。与任何传统的火箭推进方法一样,离子推进依赖于牛顿第三定律:每个作用都有一个相等和相反的反作用。典型的火箭发动机使用内部机制加速某种类型的废气远离火箭。由于这构成了废气上的力,发动机会受到相反方向的力。至关重要的是,推进需要损失质量
卫星操作的空间环境非常苛刻,与地球不同。在太空中,几乎不可能修复卫星麻烦。由于这些原因,“高可靠性”是装载在卫星上的各种设备的最重要点。近年来,已经有需要延长卫星寿命的要求,这意味着包括推进器在内的各种设备也需要延长寿命。此外,由于电力在卫星中受到限制,因此减少功耗也很重要。此外,如果成本较低且交货时间较短,它们将在商业上具有竞争力。我们终于完成了如此理想的推进器的开发。(图1,表)顺便说一句,什么是推进器?与发射车分离后,卫星通过其自己的推进系统将卫星转移到预定义的轨道上。进入预定义的轨道后,卫星使用推进系统来保持轨道和态度控制。推进器是该推进系统的一部分,实际上会产生推力。
AST Advanced Space Technologies GmbH Marie-Curie-STR。16-18,D-27711 Osterholz-Scharmbeck
本文介绍了一种评估推进器机械流功率的方法,该方法基于 1:11 比例的边界层吸入 (BLI) 飞机电动风洞模型。使用完整的飞机气动配置无法直接现场测量机械流功率,而机械流功率是 BLI 飞机性能的一个关键指标。因此,必须通过两组支持实验将测量的电功率转换为流功率。第一组实验是在小型风洞中使用推进器进行的流功率测量,该风洞复制了动力风洞测试的来流条件。第二组是电机校准实验,可以分别确定电机损耗和气动效率,从而深入了解电机和推进器的气动工作点。使用这种组合方法,电力测量结果被转换为机械流功率,实验不确定度小于 1%。
L3Harris Technologies 是国防工业领域值得信赖的颠覆者。我们的员工始终将客户的关键任务需求放在首位,提供连接太空、空中、陆地、海洋和网络领域的端到端技术解决方案,以保障国家安全。请访问 L3Harris.com 了解更多信息。
1. 阅读教育者的介绍并观看挑战视频。 1. 操纵带推进器的 ROV Hercules - http://nautl.us/2l58ioJ 2. 基本设计介绍 - http://nautl.us/2lxyudH 2. 规划并构建您自己的推进器模型。这将是向学生展示的一个很好的例子,并将帮助您回答他们的问题 3. 收集学生完成设计挑战所需的材料。随意尝试添加其他材料以使设计多样化。轻质材料(如纸板管或海报板)可以很好地代替冰棒棍。集中展示材料。学生应该选择他们的构建材料并探索各种选项。 4. 打印出学生工作表和数据表。如果您想与他人竞争模型,请打印比赛括号。[https://www.printyourbrackets.com/fillable-tournament-brackets.html] 5. 为设计试验准备推进器赛道。