摘要 光束动力推进是一种利用高能粒子束驱动航天器的空间推进系统。这项创新技术有望为未来的太空任务提供高比冲和高推力能力。光束动力推进的关键部件包括粒子加速器、传动系统和航天器推进装置。该系统通过产生和引导高能粒子束(例如电子或离子)朝向推进装置来运行。光束与推进装置的相互作用产生推力,推动航天器前进。光束动力推进具有多种优势,包括高比冲、高推力、低质量以及在各种空间环境中运行的能力。空间技术的快速进步提高了商业和私营部门的成功率,但推进技术难以克服霍曼效应。研究重点是用于深空任务的无碳电力和核技术。应对持续的挑战评论文章强调了太空探索和行星际运输的好处。关键词:光束动力推进、高能粒子、比冲、推力、粒子加速器、传动系统、航天器推进装置。
对航天器的电推进功率分别提供了AV和/或有效载荷能力的巨大增益,因此,这种推进的不同类型的推进能力,因此所施加的磁性磁性推进器(AF-MPD)似乎是最适合10至100 kW之间的电力范围。由于缺乏S/C的任务和权力,在过去的20年中,对此类推进器的调查几乎完全被停职。事实是,这些发动机也不能在实验室中代表性地操作,因为即使在非常低的真空吸尘器下,也需要与羽流的未知环境相互作用(排除在外)。需要进行空间实验,以提供尤其是I和效率的证明。与ISS一起使用,现在可以使用技术平台来恢复这项研究。因此,建议进行技术实验,以研究AF-MPD推进器的技术限制。将推进器安装在半自治的平台上,并且通过广泛的诊断软件包监视了操作和最终与S/C的相互作用。
那么,就不会有北约战略司令部政策,这是自下而上推进的早期理由。北约战略司令部政策也说明了在 28 个国家层面制定雄心勃勃的政策的困难,因为在我看来,它相当平淡和谨慎。我相信 2015 年战略司令部政策会更加广泛,但正如北约老兵所知,制定政策已经够难了,但一旦制定,改变就更难了。作为一项指令,ACO 95-2 更加灵活,适应性更强,目前已经是第三版。每一个都比前一个更雄心勃勃,并且都响应了用户的经验和反馈。北约政策的关键价值在于它的定义。它不仅明确指出所有信息和通信学科都属于 StratCom 的范畴,而且结尾表明 StratCom 不仅仅是提供信息。因此,StratCom 被定义为“(...) 协调和适当地使用北约通信活动和能力 (...) 以支持联盟的政策、行动和活动,并推进北约的目标。”
• 公元前 300 年,希腊人阿基塔斯 (Archytas) 用水蒸气推动的模型鸽飞行 • 公元 100 年,中国人在空心竹子中装满火药 • 1232 年,中国人使用火箭作为武器 • 1898 年,康斯坦丁·齐奥尔科夫斯基 (Konstantin Tsiolkovsky) 提出使用火箭探索太空的想法 • 1903 年,齐奥尔科夫斯基出版了《用火箭推进的飞行器探索宇宙》;沃纳·冯·布劳恩 (Wernher von Braun) 阅读了齐奥尔科夫斯基的著作 • 1926 年,罗伯特·戈达德 (Robert Goddard) 成功发射了一枚液体燃料火箭 • 20 世纪 40 年代,沃纳·冯·布劳恩 (Wernher von Braun) 在与英国的战争中使用 V-2 火箭
LVS :5000 美元 GBS :N/A 管制项目清单: 相关管制 :N/A 相关定义 :N/A 项目: a. 在 ISO 3977-2:1997(或同等国家标准)规定的标准参考条件下以“稳态模式”运作时的最大连续功率为 24,245 千瓦或以上;以及 b. 使用液体燃料时,在最大连续功率的 35% 下‘修正后燃料消耗率’不超过 0.219 千克/千瓦时。 注:“船用燃气涡轮发动机”一词包括那些改装用于船舶发电或推进的工业或航空衍生燃气涡轮发动机。技术说明:就 9A002 而言,“修正后的特定燃料消耗”是指发动机的特定燃料消耗,修正为净比能(即净热值)为 42 MJ/kg(ISO 3977-2:1997)的船用蒸馏液体燃料。9A003 为下列任何航空燃气涡轮发动机(参见受控物项清单)专门设计的组件或部件,其中采用了 9E003.a、9E003.h 或 9E003.i 所控制的任何“技术”。许可证要求
摘要:在机械工程创新的推动下,航空航天推进系统正在经历深刻的变革。本文探讨了该领域的最新进展和未来趋势,为航空航天工业提供了非凡的可能性。喷气发动机和涡扇发动机变得更加高效、强大和环保,重塑了商业航空。超音速和高超音速旅行有望彻底改变航空旅行,有望大幅缩短旅程时间。电动和混合动力推进系统处于可持续航空的前沿,减轻了环境问题并减少了排放。材料创新、增材制造和人工智能正在塑造这些系统的发展。航空航天业正专注于可持续发展,探索替代燃料、材料和自动化。航空航天推进的未来趋势将重新定义航空和太空旅行的界限,预示着一个对环境负责、高效和大胆探索地球边界之外的新时代。关键词:航空航天推进、机械工程、可持续航空、超音速旅行、电力推进
汽车行业参与了从标准吸热引擎到电气推进的大规模转变。选举车辆(EV)的核心元素是电池组。电池组生产未涉及制造标准和与安全有关的问题。在这种零散的情况下,循环中的电动汽车数量的增加呈指数增长,为管理电池组的寿命终止带来了新的挑战。本文分析了用于电动汽车电池组拆卸的机器人技术的使用,以提取保留其完整性的电池模块,以进一步重复使用或回收。分析强调,完全自动灾难仍然很困难,而人类机器人合作式拆卸可以保证高灵活性和生产力。该论文介绍了设计机器人单元格与操作员合作拆卸电池组的准则。WorkCell的设计评估了拆卸的技术要求,电池组周围区域的潜在爆炸气氛(ATEX)的分析以及ATEX区域中机器人工具的设计和优化。这项工作根据当前的国际标准提出了解决方案。
LVS :5000 美元 GBS :N/A 管制项目清单: 相关管制 :N/A 相关定义 :N/A 项目: a. 在 ISO 3977-2:1997(或同等国家标准)规定的标准参考条件下以“稳态模式”运作时的最大连续功率为 24,245 千瓦或以上;以及 b. 使用液体燃料时,在最大连续功率的 35% 下‘修正后燃料消耗率’不超过 0.219 千克/千瓦时。 注:“船用燃气涡轮发动机”一词包括那些改装用于船舶发电或推进的工业或航空衍生燃气涡轮发动机。技术说明:就 9A002 而言,“修正后的特定燃料消耗”是指发动机的特定燃料消耗,修正为净比能(即净热值)为 42 MJ/kg(ISO 3977-2:1997)的船用蒸馏液体燃料。9A003 为下列任何航空燃气涡轮发动机(参见受控物项清单)专门设计的组件或部件,其中采用了 9E003.a、9E003.h 或 9E003.i 所控制的任何“技术”。许可证要求
摘要 人工智能 (AI) 和机器学习 (ML) 系统在医学领域越来越多地用于改善临床决策和医疗服务。在胃肠病学和肝病学领域,研究已经探索了 AI/ML 应用的大量机会,这些应用已经转向临床应用。尽管取得了这些进展,但这些技术仍有可能引入或加剧偏见和健康不平等。如果不加以认识,这些技术在大规模部署时可能会产生或加剧系统性的种族、民族和性别差异。AI/ML 可以通过多种机制导致胃肠病学和肝病学领域的健康不平等,包括食道癌的诊断、炎症性肠病 (IBD) 的管理、肝移植、结直肠癌筛查等。本综述调整了符合道德的 AI/ML 开发和应用于胃肠病学和肝病学的框架,以便在临床实践得到推进的同时最大限度地减少偏见并优化健康公平。
本特利·艾伦(Bentley Allan)的作品得到了艾维基金会(Ivey Foundation)的慷慨支持。通过与加拿大电池金属协会的成员进行磋商,为此报告提供了信息。感谢所有研讨会的参与者。路线图方法是由本特利·艾伦(Bentley Allan)与詹姆斯·梅多克罗夫特(James Meadowcroft)和德里克·伊顿(Derek Eaton)共同开发的。萨拉·霍德(Sara Houde)和魁北克推进的工作提供了至关重要的灵感。与David Sanguinetti的对话为讲习班的设计提供了信息。纳迪姆·卡拉(Nadim Kara)和整个联邦政府的同事在整个过程中都提供了出色的意见和评论。特别感谢NRC的Chae-Ho Yim,Maria Kelleher和Jian Liu的书面评论。Lee Arden Lewis和Graeme Reed提供了宝贵的见解。西蒙·蒂博(Simon Thibault)和米克尔(MickaelDollé)友善地提供了他们的专业知识。