高级科学技术研究组织,横滨,日本物理研究中心基金会(FOPRC),意大利科森扎。电子邮件:takaaki.mushya@gmail.com通讯作者详细信息:Takaaki Musha; takaaki.mushya@gmail.com摘要务实和假设的几种太空推进方法都有自己的缺点和优势。 在本文中,讨论了通过电载力推动卫星的可能性。 通过理论计算,这种推进方法可以产生足够的力来控制卫星的轨道。 它仅使用使用太阳能电池板产生的电能,卫星可以永久绕地球和太阳附近的任何轨道传播。 关键字:空间推进;卫星;电气; Biefeld-Brown效应引入所有航天器都需要一种推进方法。 已经开发了几种务实的和假设的空间推进方法,每个方法都有自己的缺点和优势。 最初向所需轨道发射卫星需要具有足够推进能力的常规液体或固体驱动的火箭发动机来克服地球大气层并达到稳定轨道所需的高速度。 星际航天器可能需要如此强大的传统火箭发动机,但也可以依靠功率较小但持续时间较长,较高的ISP发动机,例如离子推进器或霍尔效应推进器。 卫星,即使在稳定的轨道中一次,也需要一种可靠的长时间推进方法才能保持功能。电子邮件:takaaki.mushya@gmail.com通讯作者详细信息:Takaaki Musha; takaaki.mushya@gmail.com摘要务实和假设的几种太空推进方法都有自己的缺点和优势。在本文中,讨论了通过电载力推动卫星的可能性。通过理论计算,这种推进方法可以产生足够的力来控制卫星的轨道。它仅使用使用太阳能电池板产生的电能,卫星可以永久绕地球和太阳附近的任何轨道传播。关键字:空间推进;卫星;电气; Biefeld-Brown效应引入所有航天器都需要一种推进方法。已经开发了几种务实的和假设的空间推进方法,每个方法都有自己的缺点和优势。最初向所需轨道发射卫星需要具有足够推进能力的常规液体或固体驱动的火箭发动机来克服地球大气层并达到稳定轨道所需的高速度。星际航天器可能需要如此强大的传统火箭发动机,但也可以依靠功率较小但持续时间较长,较高的ISP发动机,例如离子推进器或霍尔效应推进器。卫星,即使在稳定的轨道中一次,也需要一种可靠的长时间推进方法才能保持功能。即使卫星在轨道上,也可能会从薄的气氛和其他力量中拖动,这些力会随着时间的流逝而降解轨道。因此,卫星必须能够对其轨道进行小校正以维护轨道,称为轨道站保持[1]。此外,卫星可能需要不时将一个轨道转移到另一个轨道[2],能够在地球表面,太阳或可能的其他感兴趣的天文学对象[3]中保持特定的态度[3],并且由于组件故障或其他原因甚至可能需要以安全和受控的方式被解除。在大多数情况下,卫星执行所设计的任务的能力已经结束,其用途寿命已经结束,当它允许其对其轨道进行此类调整的推进系统已经耗尽或不再产生推进。目前,卫星通常只会使用较小版本的化学火箭发动机或抵抗火箭的推进。有些人确实使用电动动量轮进行态度控制,但是由于运动部件而导致的失败,并且在可以执行的校正程度上有限。最近,卫星已经开始使用电动推进,例如离子推进器来保持和调节轨道,但是尽管电力电力,但此类推进器仍然有限地供应其
摘要 光束动力推进是一种利用高能粒子束驱动航天器的空间推进系统。这项创新技术有望为未来的太空任务提供高比冲和高推力能力。光束动力推进的关键部件包括粒子加速器、传动系统和航天器推进装置。该系统通过产生和引导高能粒子束(例如电子或离子)朝向推进装置来运行。光束与推进装置的相互作用产生推力,推动航天器前进。光束动力推进具有多种优势,包括高比冲、高推力、低质量以及在各种空间环境中运行的能力。空间技术的快速进步提高了商业和私营部门的成功率,但推进技术难以克服霍曼效应。研究重点是用于深空任务的无碳电力和核技术。应对持续的挑战评论文章强调了太空探索和行星际运输的好处。关键词:光束动力推进、高能粒子、比冲、推力、粒子加速器、传动系统、航天器推进装置。
核裂变反应堆可以安全地提供数千到数百万千瓦的电力——这对于考虑永久性月球和火星栖息地或载人或机器人任务的大型动力/推进系统至关重要。核裂变反应堆可用于航天的多种应用。例如,航天器上的反应堆可以为电力/离子推进装置提供电力,这一概念称为核电推进 (NEP)。此外,核反应堆还具有支持最终在月球和火星上建立的地面栖息地的高能源需求的吸引力,也称为裂变地面动力 (FSP)。基于裂变的核反应堆还通过反应堆堆芯过热最终用于航天器推进剂的冷却剂的概念为改进直接推进系统提供了独特的机会,称为核热推进 (NTP)。20 世纪 50 年代至 70 年代期间,NTP 系统进行了重大技术开发工作,虽然许多成功的设计都是在地面建造和测试的,但美国从未试飞过任何 NTP 系统。过去几十年来,各种 NEP 和 FSP 计划已经实施,提供了宝贵的研究、技术创新和设计考虑。
A) 激光粉末床熔合 [https://doi.org/10.1016/j.actamat.2017.09.051]、B) 电子束粉末床熔合 [来源:瑞典 Freemelt AB]、C) 激光粉末 DED [来源:Formalloy]、D) 激光线 DED [来源:Ramlab 和 Cavitar]、E) 电弧线 DED [来源:Institut Maupertuis 和 Cavitar]、F) 电子束 DED [NASA]、G) 冷喷涂 [来源:LLNL]、H) 加成搅拌摩擦沉积 [NASA]、I) 超声波 AM [来源:Fabrisonic]。
核电站运行的最大经验是核海军推进,特别是航空母舰和潜艇。这些积累的经验可能成为拟议的新一代紧凑型核电站设计的基础。核动力潜艇的任务正在根据信号情报收集和特种作战重新定义。核动力舰艇约占美国海军作战舰队的 40%,包括整个海基战略核威慑力量。美国海军的所有作战潜艇和超过一半的航空母舰都是核动力的。这里的主要考虑因素是核动力潜艇不像传统发电厂那样消耗氧气,而且它们在燃料补给之前具有很长的续航能力或任务时间;仅受船上可用的食物和空气净化用品的限制。另一个独特的考虑因素是使用高浓缩铀 (HEU) 来提供紧凑的反应堆系统,该系统具有足够的内置反应性,以克服氙气反应堆的死区时间,从而实现快速重启和加油之间的长燃料燃烧期。第二次世界大战期间,潜艇使用可以在水面运行的柴油发动机,为大量电池充电。这些电池随后可以在潜艇下潜时使用,直到电量耗尽。此时潜艇必须浮出水面为电池充电,并且容易受到飞机和水面舰艇的探测。尽管使用特殊的通气管装置将浅潜水下的潜艇吸入和排出空气,但核反应堆理论上可以为其提供无限的下潜时间。此外,核燃料的高比能或每单位重量的能量消除了跟随水面或水下海军舰艇舰队的脆弱油轮舰队不断加油的需要。另一方面,核反应堆一次加油足以满足长时间的需要。现代海军反应堆的浓缩度高达 93%,铀 235 的浓缩度可达 97.3%,设计为在 20-30 年的使用寿命中每 10 年或更长时间更换一次燃料,而陆基反应堆使用的燃料浓缩度低至铀 235 的 3-5%,每 1-1.5 年需要更换一次燃料。新堆芯的设计使用寿命为在航母上 50 年,在潜艇上 30-40 年,这是弗吉尼亚级潜艇的设计目标。堆芯中加入了可燃毒物,如钆或硼。这允许较高的初始反应性,以补偿裂变产物毒物在反应堆寿命期间的积累
单位:设备数量。组件、零件和配件,以美元价值表示。相关管制: 1.)另请参阅 9A104。2.)航天运载火箭属于国务院管辖范围。3.)自 1999 年 3 月 15 日起,所有卫星(包括商业通信卫星)均受《国际武器贸易条例》管辖。自 1999 年 3 月 15 日起,所有商业通信卫星出口许可证申请将由国务院国防贸易管制办公室处理。商业通信卫星及相关物项管辖权的重新移交不得影响商务部在 1999 年 3 月 15 日之前颁发的任何出口许可证的有效性,或根据《出口管理条例》在 1999 年 3 月 14 日或之前提交并随后由商务部颁发的任何出口许可证申请的有效性。商务部许可的商业通信卫星(包括已出口的商业通信卫星)在规定的到期日之前仍受《出口管理条例》和已颁发出口许可证的所有条款和条件的约束。商务部为商业通信卫星颁发的所有许可证,包括许可证
核电站运行的最大经验是核海军推进,特别是航空母舰和潜艇。这些积累的经验可能成为拟议的新一代紧凑型核电站设计的基础。核动力潜艇的任务正在根据信号情报收集和特种作战重新定义。核动力舰艇约占美国海军作战舰队的 40%,包括整个海基战略核威慑力量。美国海军的所有作战潜艇和一半以上的航空母舰都是核动力的。这里的主要考虑因素是核动力潜艇不像传统动力装置那样消耗氧气,并且在燃料补给之前具有较长的续航能力或任务时间;仅受船上可用的食物和空气净化用品的限制。另一个独特的考虑是使用高浓缩铀 (HEU) 来提供紧凑的反应堆系统,该系统具有足够的内置反应性,可以克服氙气反应堆的死区时间,从而实现快速重启和加油之间的长燃料燃烧期。在第二次世界大战期间,潜艇使用可以在水面运行的柴油发动机,为大量电池充电。这些可以在潜艇潜水时使用,直到放电。此时,潜艇必须重新浮出水面为电池充电,并且容易受到飞机和水面舰艇的探测。尽管使用特殊的通气管装置将空气吸入和排出浅潜于水面以下的潜艇,但核反应堆理论上为其提供了无限的潜水时间。此外,核燃料的高比能(即每单位重量的能量)消除了跟随水面或水下海军舰艇舰队的脆弱油轮舰队不断加油的需要。另一方面,核反应堆一次加油足以满足长时间的需要。现代海军反应堆的浓缩度高达 93%,U 235 能够达到 97.3%,设计为在其 20-30 年的使用寿命中每隔 10 年或更长时间才加油一次,而陆基反应堆使用的燃料浓缩度低至 U 235 的 3-5%,需要每隔 1-1 1/2 年加油一次。新反应堆的设计使用寿命为航母 50 年,潜艇 30-40 年,这是弗吉尼亚级潜艇的设计目标。核心中含有可燃毒物,例如钆或硼。这些允许较高的初始反应性,以补偿裂变产物毒物的积累
摘要该特定论文探讨了空间“电推进系统”如何成为最有前途的未来派航天器推进技术之一,比化学和其他推进技术具有独特的优势。尽管共享某些相似之处,但空间航天器和空中飞行器的推进系统却不同,并且在这里探索了从下层大气到上层大气层的可能性的战略和系统方法,但在这里也很好地强调了这一点,尽管这也很简短。此外,关于特定的脉冲和产生的推力,在常规推进系统与电气推进系统之间进行了简要比较。此外,简要讨论了陆地气氛中不同的变异条件,以解决空间电气推进系统的各种挑战,并为这些挑战寻找新颖和创新的解决方案。还提到了当前情况下电气推进系统和各种推进器的不同类型的应用。主要重点是电力推进系统用于低空地轨道卫星的可行性,这些卫星主要用于地球观察,土地,水资源映射,气候警告系统,地球科学等。目前,从战略上开始进入电气推进系统及其在地球上层大气中的关键作用。虽然,但是,空间电动推进系统的其他各种应用,例如中高度的地球轨道卫星,主要用于航行目的,用于电信的地理卫星等,太空运输 - 发射器踢阶段,太空踢阶段,太空科学 - 互动空间探索等是这些特定纸张的范围,无法探索这些令人兴奋的范围。尽管如此,诸如卫星重量减轻,发射成本的减少,卫星的效率和功能的提高,空间碎屑数量减少,无毒绿色推进剂的使用减少,也将在该论文的范围之外讨论。
“SM-3 Block IA发射” 摘自防卫省网站 关于2007年12月18日从“金刚”号驱逐舰发射SM-3导弹的试验结果 http://www.mod.go.jp/j/approach/defense/bmd/20081218_shiken.html
在这份白皮书中,我们研究了一种新型的行星科学任务推进系统:一种低温氢氧推进系统(REAPS)。尽管排骨比其他化学推进系统的低温火箭发动机具有相当大的优势,但由于长期在低温推进剂的空间存储中面临的挑战,大部分都将其用于任务的发射阶段。我们表明,被动低温储存技术的新发展可以解决此问题,现在使排骨适合空间推进。排骨发动机比传统的高光发动机具有重要的特定脉冲(I SP)优势,从而减少了发射的大量行星科学航天器。排骨还提供了比传统高光发动机的其他优势,这些优势对于行星科学任务尤其重要,尤其是天体生物学兴趣场所的着陆器。这些包括“清洁”燃烧的排气,类似于仅产生水的燃料电池;可登陆的登陆;使用推进剂发电的可能性比仅使用主电池的任务允许更长的寿命任务。以及将燃料用作辐射屏蔽的可能性。我们建议对地面测试中的行星应用评估低温氢氧推进系统,包括已在MSFC,GSFC和其他地方开发的系统,从而进行了行星应用。