3 1 核电学校 - 入伍毕业生 PHYS 111N 入门普通物理学 I 4 核电学校 - 入伍毕业生 PHYS 112N 入门普通物理学 II 4 核电学校 - 入伍毕业生 MET 200 制造过程与方法 3 核电学校 - 入伍毕业生 MET 300 热力学 3 核电学校 - 入伍毕业生 MET 320 机械元件设计 3 核电学校 - 入伍毕业生(仅限 MMN) MET 330 和 335 流体力学与实验室 4 核电学校 - 入伍毕业生 MET 387 电力与能源实验室 1 核电学校 - 入伍毕业生 MET 450 能源系统 3 核电学校 - 入伍毕业生(仅限 ETN/EMN) EET 350 和 355 电气技术基础与实验室 4 核推进装置操作员、讲师、招聘人员、职业顾问、某些专业
螺旋桨驱动,倒车不应导致推进机械过载。(3) 当蒸汽涡轮机用作主推进装置时,它们应能够在倒车自由航线中保持至少 70 % 的前进转速,相当于最大连续前进功率,持续至少 15 分钟。倒车试验应限制在 30 分钟以内或按照制造商的建议进行,以避免涡轮机因“风阻”和摩擦的影响而过热。(4) 主推进系统应进行测试,以证明倒车响应特性。测试应至少在推进系统的操纵范围内并从所有控制位置进行。测试计划应由船厂提供并经验船师接受。如果制造商已定义具体操作特性,则应将其纳入测试计划。(2018) (5) 推进装置的反向特性,包括可调螺距螺旋桨的叶片螺距控制系统,应在试验期间进行演示和记录。(2018)
BaltiCo 已经开发出一种生产轻型面板、船舶或类似结构的技术:以自动化方式铺设碳纤维以形成承重内部结构 - 桁架状结构,然后将覆盖该结构,例如使用 GFRP 层压板。这种股线铺设工艺已经用于设计和建造零排放轻型双体船 0e-N。它由四个模块组成 - 两个船体、主甲板和太阳能甲板 - 可以组装和拆卸。这艘双体船配有太阳能模块,可为电力推进装置提供能量,也是由 BaltiCo 设计和制造的。使用股线铺设工艺制造的轻型面板可用作舱壁、甲板或建造船舱。这种面板通过了 FTP 规则第 11 部分的规定,即在测试中经受了 60 分钟的火焰考验而没有发生故障。
螺旋桨驱动,倒车不应导致推进机械过载。 (3) 当蒸汽涡轮用作主推进装置时,它们应能在倒车自由航线中保持至少 70 % 的前进转速,相当于最大连续前进功率,持续至少 15 分钟。倒车试验应限制在 30 分钟以内或按照制造商的建议进行,以避免涡轮因“风阻”和摩擦的影响而过热。 (4) 主推进系统应进行测试,以证明倒车响应特性。测试应至少在推进系统的操纵范围内和所有控制位置进行。船厂应提供测试计划,并经验船师接受。如果制造商已定义特定的操作特性,则应将其包括在测试计划中。 (5) 推进装置的换向特性,包括可调螺距螺旋桨的桨叶变距控制系统,应在试验期间进行演示和记录。(2018)
首款通过核聚变增强的电力推进装置 纽约市,纽约州 — RocketStar Inc. 成功演示了 FireStar Drive,这是一种使用核聚变增强脉冲等离子体的突破性航天器电力推进装置。这种创新装置通过利用一种独特的无中子核聚变形式,显著提高了 RocketStar 基础水燃料脉冲等离子推力器的性能。基础推力器通过水蒸气电离产生高速质子。当这些质子与硼原子的原子核碰撞时,硼原子发生聚变,转变为高能碳,并迅速衰变成三个阿尔法粒子。通过将硼引入推力器的排气管,FireStar Drive 实现了这一聚变过程。与加力燃烧室通过将燃料引入排气管来增强喷气发动机推力的方式类似,推进器排气管中发生的聚变显著提高了其性能。发现 这一核聚变发现首次出现在 AFWERX 的 SBIR 第 1 阶段。当时,硼化水被引入脉冲等离子推进器的排气羽流中。这产生了阿尔法粒子和伽马射线,这是核聚变的明显迹象。它在随后的 SBIR 第 2 阶段得到了进一步验证。在佐治亚州亚特兰大的佐治亚理工学院高功率电力推进实验室 (HPEPL),它不仅产生了电离辐射,还将基础推进装置的推力提高了 50%。“ RocketStar 不仅逐步改进了推进系统,而且通过应用新概念在排气中产生聚变-裂变反应,实现了飞跃,”新墨西哥大学核工程教授 Adam Hecht 表示。“这是技术发展中激动人心的时刻,我期待着他们未来的创新。”“我们的团队已经探索了一段时间,我们对初步测试的结果感到非常兴奋,”RocketStar 首席执行官 Chris Craddock 表示。 “在佛罗里达的一次会议上,我在一张餐巾纸上勾勒出这个想法,并向 Miles Space 的创始人 Wes Faler 描述了它。他在开发基础推进器和聚变增强器方面非常聪明。我们收购了 Miles Space,Faler 现在是我们的首席技术官。所以现在我很高兴能够让我们已经非常出色的推进器进行聚变增强,并显著提高性能。感谢 AFWERX 和 USSF 相信这是可能的!” 下一步 RocketStar 的现有推进器现已可供客户交付。它被称为 M1.5,将作为 D-Orbit 专有的 OTV ION 卫星运载器上的托管有效载荷在太空中进行演示,该卫星运载器将执行计划于今年 7 月和 10 月进行的两次 SpaceX 运输机任务。
为了满足这一需求,我们相应地调整了我们的飞行器硬件和模拟能力,主要努力应对高马赫数和低远地点轨迹所固有的高热负荷和机械负荷环境。其中,VSB-30 探空火箭飞行器已多次证明了其出色的性能和进一步的潜力。VSB-30 是一种两级固体推进剂探空火箭,由巴西 DCTA 在 DLR MORABA 的长期合作支持下开发 [7]。自 2004 年首飞以来,MORABA 已发射超过 20 枚 VSB-30,成功率 100%。该飞行器的性能能力超过 400 公斤有效载荷至 250 公里远地点,现在已用于我们所有的研究领域,并且发动机级的制造已达到产能。同时,MORABA 采购了 PATRIOT 导弹防御系统的军用剩余推进装置,并从 2016 年开始成功进行了多次单级和两级飞行。这些飞行器被证明是有价值的,并且它们在更高性能环境中的应用很有吸引力,但必须采购强大的助推级。
1.本指南适用于船体长度()为2.5m至24m的休闲船和游艇等海上休闲船舶(以下称“休闲船舶”)的设计、建造、废气排放和噪声排放等。 (1)在设计和建造方面,适用于: (A)休闲船舶和部分完工的船舶; (B)以下部件: (a)舷内和尾驱发动机的点火保护设备; (b)舷外发动机的启动保护装置; (c)舵轮、操舵机构和电缆组件; (d)用于固定装置的燃油箱和燃油软管; (e)预制舱口和舷窗。 (2)在废气排放方面,适用于: (A)安装于或专门用于安装在休闲船舶上的推进发动机; (B)安装在休闲船舶上的或经过“重大发动机改造”的休闲船舶上的推进发动机。 (3) 就噪声排放而言,适用于: (A) 装有不带整体排气装置或舷内推进装置尾驱发动机的休闲船舶; (B) 装有不带整体排气装置或舷内推进装置尾驱发动机并经过重大船舶改装的休闲船舶; (C) 打算安装在休闲船舶上的舷外发动机和装有整体排气装置的尾驱发动机; (4) (2) 和 (3) 的规定仅适用于首次生产的产品。 2. 以下产品不在本指南范围之内: (1) 就设计和建造而言,适用于: (A) 仅用于竞赛的船舶,包括制造商标明为竞赛用途的赛艇和训练用赛艇; (B) 独木舟和皮划艇、贡多拉和脚踏船; (C) 风帆冲浪板; (D) 冲浪板,包括动力冲浪板; (E) 专门用于载人并运载商业用途乘客的船只,不论乘客人数多少; (F) 潜水器; (G) 气垫船; (H) 水翼船; (I) 以石油或天然气为燃料的外燃蒸汽动力船只。 (J) 个人水上交通工具 (K) 充气船 (2) 就废气排放而言,针对: (A) 安装或专门用于安装于以下船只的推进发动机: (a) 仅用于竞赛并由制造商标明为竞赛用途的船只, (b) 专门用于载人并运载商业用途乘客的船只,不论乘客人数多少, (c) 潜水器, (d) 气垫船, (e) 水翼船; (f) 个人水上交通工具 (g) 充气船 (3) 就噪音排放而言,针对: (2) 提及的所有船只
核裂变反应堆可以安全地提供数千到数百万千瓦的电力——这对于考虑永久性月球和火星栖息地或载人或机器人任务的大型动力/推进系统至关重要。核裂变反应堆可用于航天的多种应用。例如,航天器上的反应堆可以为电力/离子推进装置提供电力,这一概念称为核电推进 (NEP)。此外,核反应堆还具有支持最终在月球和火星上建立的地面栖息地的高能源需求的吸引力,也称为裂变地面动力 (FSP)。基于裂变的核反应堆还通过反应堆堆芯过热最终用于航天器推进剂的冷却剂的概念为改进直接推进系统提供了独特的机会,称为核热推进 (NTP)。20 世纪 50 年代至 70 年代期间,NTP 系统进行了重大技术开发工作,虽然许多成功的设计都是在地面建造和测试的,但美国从未试飞过任何 NTP 系统。过去几十年来,各种 NEP 和 FSP 计划已经实施,提供了宝贵的研究、技术创新和设计考虑。
以快速前往火星为设计目标,探索定向能应用于航天器任务设计。随着光子激光技术的不断发展,预计将实现前所未有的尺寸(直径 10 米)和功率(100 兆瓦)的地球激光阵列。这种尺寸的相控阵激光器结合大气补偿,能够将激光功率传送到地月空间的航天器,入射激光通过充气反射器聚焦到氢加热室中。然后,氢推进剂通过喷嘴排出,实现 3000 秒的比冲。该架构可通过回燃机动立即重复使用,以返回推进装置,同时仍在地球激光的射程范围内。能够承受更大的激光通量,从而实现高推力和高比冲的组合,与激光电推进相比,这种方法更具优势,并且占用的参数空间类似于气芯核热火箭(无需反应堆)。加热室及其相关的再生冷却和推进剂处理系统是设计的关键要素,在本研究中受到特别关注。还详细分析了经过 45 天的飞行后到达火星所需的天体动力学和极端空气捕获机动。讨论了激光热推进作为太阳系及其他地区其他快速飞行任务的有利技术的应用。
美国海军目前正在设计下一代航空母舰 CVN 21。该级航空母舰将使用与现有尼米兹级相同的基本船体形状,但将对船内进行大量重新设计,以改进武器处理和物资管理功能。它还将采用几项新技术,包括新型推进装置和新型飞机发射和回收系统。这些改进不仅将提高舰艇的作战能力,而且预计还将降低舰艇的人力需求和维护成本。根据目前的军队现代化计划,随着尼米兹级舰艇达到其计划的 50 年使用寿命,CVN 21 级新舰艇将每四到五年推出一次。按照这一战略,尼米兹级航空母舰将再运行 50 多年,而将航空母舰舰队改造成新级别的舰艇将需要几十年的时间。根据一些看似有希望的初步计算,兰德公司向航空母舰项目执行办公室 (PEO) 提出了一种加速航空母舰部队转型的方法:在尼米兹级航空母舰达到中期寿命时更换它们,而不是给它们加油。在本报告中,我们确定了建造新航母而不是给它们加油的具体舰队管理方案,并评估了它们的优缺点。本报告应该具有重要意义