按照掩蔽语言建模 (MLM) 目标进行训练的多语言预训练语言模型 (multiPLM) 通常用于双语文本挖掘等跨语言任务。然而,这些模型的性能对于低资源语言 (LRL) 仍然不是最优的。为了改进给定 multiPLM 的语言表示,可以进一步对其进行预训练。这称为持续预训练。先前的研究表明,使用 MLM 进行持续预训练,随后使用翻译语言建模 (TLM) 进行预训练可以改进 multiPLM 的跨语言表示。然而,在掩蔽期间,MLM 和 TLM 都会给予输入序列中的所有标记相同的权重,而不管标记的语言属性如何。在本文中,我们引入了一种新颖的掩蔽策略,即语言实体掩蔽 (LEM),用于持续预训练步骤,以进一步改进现有 multiPLM 的跨语言表示。与 MLM 和 TLM 相比,LEM 将掩码限制在语言实体类型名词、动词和命名实体上,这些实体在句子中占据更重要的地位。其次,我们将掩码限制在语言实体范围内的单个标记上,从而保留更多上下文,而在 MLM 和 TLM 中,标记是随机掩码的。我们使用三个下游任务评估 LEM 的有效性,即双语挖掘、并行数据管理和代码混合情感分析,使用三种低资源语言对英语-僧伽罗语、英语-泰米尔语和僧伽罗语-泰米尔语。实验结果表明,在所有三个任务中,使用 LEM 持续预训练的多 PLM 优于使用 MLM+TLM 持续预训练的多 PLM。
摘要。在侧通道分析(SCA)中,攻击的成功在很大程度上取决于数据集大小以及每个类中的实例数。合成痕迹的产生可以帮助改善诸如分析攻击之类的问题。但是,从实际痕迹中手动创建合成迹线很难。因此,迫切需要自动化这一过程的人造痕迹。最近,在创建逼真的图像中击败了另一个称为生成对抗网络(GAN)的生成模型后,扩散模型获得了很多认识。我们探讨了SCA领域中扩散模型的用法。我们为已知的掩码设置和未知掩模设置提供了框架,其中可以应用扩散模型。在已知的面具设置下,我们表明在拟议的框架下生成的痕迹保留了原始泄漏。接下来,我们证明了在未知掩码设置中创建的分析数据可以减少所需的攻击痕迹以进行分析攻击。这表明,从训练有素的扩散模型中创建的艺术品创建的分析数据包含要利用的有用泄漏。
乳腺肿瘤是乳腺癌诊断最突出的指标之一。精确的肿瘤分割对于提高乳腺癌检测的准确性至关重要。医生对 MRI 扫描的评估非常耗时,需要大量的人力和专业知识。此外,传统的医学分割方法通常需要先验信息或手动特征提取,导致诊断具有主观性。因此,开发一种自动图像分割方法对于临床应用至关重要。这项工作提出了 BTS-GAN,一种在磁共振成像 (MRI) 扫描中使用条件 GAN (cGAN) 的自动乳腺肿瘤分割过程。首先,我们使用编码器-解码器深度网络作为生成器,并在编码器和解码器之间使用跳跃连接,以提高定位效率。其次,我们利用并行扩张卷积 (PDC) 模块来保留各种大小肿块的特征并有效提取有关肿块边缘和内部纹理的信息。第三,在 cGAN 的损失函数中加入了额外的分类相关约束,以缓解基于分类的图像到图像 (I2I) 翻译任务中难以收敛的挑战。我们提出的模型的生成器端学习检测肿瘤并构建二值掩码,而鉴别器学习区分地面真实和合成掩码,从而驱动生成器生成尽可能真实的掩码。实验结果表明,我们的 BTS-GAN 对于乳腺肿瘤分割更有效、更可靠,并且在公开可用的 RIDER 乳腺癌 MRI 数据集上的 IoU 和 Dice 系数方面优于其他分割技术。我们提出的模型分别实现了 77% 和 85% 的平均 IoU 和 Dice 得分。2022 作者。由 Elsevier BV 代表卡拉布克大学出版 这是一篇根据 CC BY-NC-ND 许可 ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 的开放获取文章。
数据增强现在是图像训练过程的重要组成部分,因为它可以有效地防止过度拟合并使模型对噪声数据集更加稳健。最近的混合增强策略已经取得了进展,可以生成可以丰富显着性信息的混合掩码,这是一种监督信号。然而,这些方法在优化混合掩码时会产生很大的计算负担。出于这个动机,我们提出了一种新颖的显着性感知混合方法GuidedMixup,旨在以较低的计算开销保留混合图像中的显着区域。我们开发了一种高效的配对算法,该算法致力于最小化配对图像的显着区域的冲突并在混合图像中实现丰富的显着性。此外,GuidedMixup通过平滑地插值两个配对图像来控制每个像素的混合率以更好地保留显着区域。在多个数据集上的实验表明,GuidedMixup 在分类数据集上实现了数据增强开销和泛化性能之间的良好平衡。此外,我们的方法在损坏或精简数据集的实验中也表现出良好的性能。
基于实验内容理解的模型以通用掩码语言模型为目标函数,通过对微调后的模型提供提示来生成假设,从专利数据中创建了10万条与因果关系相关的假设生成数据,并准备了假设生成所需的数据,聘请语言能力强的标注人员为1万条专利数据构建了标注标准,对选定的专利进行了300余次标注。
生成的AI模型和社交媒体的兴起引发了图像编辑技术的广泛兴趣。现实且可控的图像编辑现在对于内容创建,营销和娱乐等应用是必不可少的。在大多数编辑过程中的一个关键步骤是图像合成,无缝地将前景对象与背景图像集成。然而,图像构成的挑战带来了许多挑战,包括结合新的阴影或反射,照明错位,不自然的前景对象边界,并确保对象的姿势,位置和刻度在语义上是连贯的。以前关于图像合成的作品[5,30,32,59,61]专注于特定的子任务,例如图像融合,协调,对象放置或阴影一代。更多的方法[9,36,50,62]表明,可以使用扩散模型同时处理一些单独的组合方面(即,颜色协调,重新定位,对象几何调整和阴影/反射生成)[18,46]。这种方法通常以自我监督的方式进行训练,掩盖地面真相图像中的对象,并将蒙版的图像用作输入[9,62],或者在反向扩散过程中仅在掩模区域内deno [9,50]。因此,在本文中,我们提出了一个生成图像合成模型,该模型超出了掩码,甚至使用空掩码,在这种情况下,模型将自然位置在适合尺度的自然位置中自动合成对象。我们的模型是图像合成的第一个端到端解决方案,同时解决了图像合成的所有子任务,包括对象放置。因此,在推理过程中需要掩模作为输入,导致了几个限制:(i)对普通用户进行精确掩码可能是不乏味的,并且可能会导致不自然的复合图像,具体取决于输入蒙版的位置,规模和形状; (ii)掩模区域限制了生成,其训练数据不考虑对象效应,从而限制了合成适当效果的能力,例如长阴影和反射; (iii)物体附近的背景区域往往与原始背景不一致,因为该模型在面具覆盖的情况下不会看到这些区域。为了实现此目的,我们首先使用图像介绍来创建包括图像三重态的训练数据(前景对象,完整的背景图像和
说明CleanSpace steri-plus被批准与CleanSpace半口罩一起使用,并由steri-plus呼气过滤器盒(CS3038)和过滤器(CS3039)组成。“ steri-plus”(CS3038和CS3039)是一种附件,当与半掩码的CleanSpace Papr一起使用时,它提供了源控制。配件提供了从面罩呼气阀发出的佩戴者呼出空气的高水平过滤。适用于无菌环境或需要源控制的患者护理设置。seli-plus情况是可重复使用的,并且过滤器(CS3039)是一次性的。请参阅使用说明。
文本到图像扩散模型在过去两年中取得了巨大的进步,从而可以基于开放域文本描述产生高度逼真的图像。,尽管它们成功,但文本描述通常也很难充分传达详细的控制,即使是由长长而复杂的文本组成的。此外,最近的研究还表明,这些模型在理解此类复杂文本和生成相应图像方面面临挑战。因此,越来越需要在文本描述之外启用更多的控制模式。在本文中,我们引入了Uni-Controlnet,这是一个统一的框架,允许同时利用不同的本地控件(例如,边缘地图,深度图,分割掩码)和全局控件(例如,剪辑掩码)(例如,剪贴图像嵌入),以一种单个模型的柔性和可构成方式。与现有方法不同,Uni-Controlnet仅需要在冷冻预训练的文本到图像扩散模型时对两个附加适配器进行微调,从而消除了从头开始的巨大培训成本。此外,由于一些专用的适配器设计,uni-controlnet只需要一个恒定数字(即2),而不管使用的本地或全局控件的数量如何。这不仅降低了微调成本和模型大小,因此更适合于现实世界的部署,而且还促进了不同条件的合成性。通过定量和定性比较,在可控性,发电质量和合成性方面,Uni-Controlnet展示了其优于现有方法的优势。代码可在https://github.com/shihaozhaozsh/uni-controlnet上找到。
改善现实世界中通用机器人操纵的概括能力长期以来一直是一个重大挑战。现有的方法通常依赖于收集大规模机器人数据,这些机器人数据是昂贵且耗时的。但是,由于数据的多样性不足,他们通常会限制其在开放域中的能力,并具有新的对象和不同的环境。在本文中,我们提出了一种新颖的范式,该范式有效地利用了由Internet规模的基础模型生成的语言分割掩码,以调节机器人操纵任务。通过将蒙版模态整合到源自视觉基础模型的语义,几何和时间相关先验中,并将其方法呈现为端到端的策略模型,我们的方法可以有效地感知的对象姿势并启用样本有效的概括性学习,包括新的对象,包括新的对象,包括新的对象,semantic intancics,Semantic类别,语义类别,和统一的背景。我们首先引入了一系列基础模型,以跨多个任务进行基础语言需求。其次,我们基于模仿学习开发了一个两流2D策略模型,该模型可以处理原始图像和对象掩码,以以局部 - 全球知觉方式预测机器人动作。在Franka Emika机器人和低成本双臂机器人上进行的广泛的现实世界实验证明了我们提出的范式和政策的有效性。可以在link1或link2中找到演示,我们的代码将在https://github.com/mcg-nju/tpm上发布。