Mehri Shabani,H。Younesi,MaximePontié,A。Rahimpour,M。Rahimnejad等。通过掺入氧化石墨烯和功能化的石墨烯氧化硫烯中的硫酸聚乙烯硫酸酯膜中,增强了微生物燃料细胞的效率。可再生能源,2021,179,pp.788-801。10.1016/j.renene.2021.07.080。hal-03335271
提出,建筑,修改,操作和退役小型研发项目的设施;常规实验室操作(例如化学标准和样品分析的制备);并且经常进行小型试点项目(通常不到2年),以在演示行动之前验证一个概念,前提是建筑或修改将在先前受到干扰或发达的地区内部或连续(如果有活跃的公用事业和当前使用的道路易于访问)。未包括在此类别中的示威行动,这意味着按规模规模采取的行动,以表明技术是否可以在更大的规模上可行并适合商业部署。b3.15使用纳米级材料的小型室内研发项目
脂质纳米粒子 (LNP) 广泛用于 mRNA 递送,阳离子脂质极大地影响生物分布、细胞摄取、内体逃逸和转染效率。然而,阳离子脂质的费力合成限制了有效候选物的发现并减慢了规模化生产。在这里,我们开发了一种基于合理设计的胺-硫醇-丙烯酸酯结合的一锅串联多组分反应,该反应能够快速(1 小时)且轻松地在室温下合成酰胺结合可降解 (AID) 脂质。对 100 种化学性质不同的 AID 脂质组合库进行结构-活性关系分析,鉴定出一种通常可提供有效脂质的尾状胺环烷基苯胺。实验和理论研究表明,嵌入的大苯环可以使脂质呈现更圆锥形,从而增强内体逃逸和 mRNA 递送。领先的 AID-脂质不仅可以介导 mRNA 疫苗的局部递送和 mRNA 治疗剂的全身递送,还可以改变肝嗜性 LNP 的趋向性,从而选择性地将基因编辑器递送到肺部,将 mRNA 疫苗递送到脾脏。
“这项研究通过改善水电解在推进绿色能源解决方案方面起着至关重要的作用,这是一种从风能和太阳能等可再生能源产生绿色氢的关键技术,” Tooku University高级大学高级材料研究所(WPI-AIMR)的副教授Hao Li说。
†为了了解Al 2 O 3纳米纤维的分布,已经对具有10 wt%Al 2 O 3纳米纤维的聚合物凝胶电解质进行了SEM-EDX分析,图S1。我们观察到Al 2 O 3纳米纤维的均匀分布。对于3 wt%Al 2 O 3,不太可能有聚合。另一方面,我们发现离子的扩散率在较高浓度的Al 2 O 3纳米纤维下降低。,即使较高的Al 2 O 3纳米纤维大大改善了GPE的介电常数,它们的剩余比也可能阻止离子传导的传输路径。因此,在这里,我们仅专注于3 wt%Al 2 O 3纳米纤维的GPE。
1 沙特阿拉伯阿尔哈吉 11942 萨坦·本·阿卜杜勒阿齐兹王子大学科学与人文学院生物系 2 埃及伊斯梅利亚 8366004 苏伊士运河大学理学院动物学系 3 埃及谢宾·埃尔科姆 6131567 梅努菲亚大学工程学院基础工程科学系 4 埃及谢宾·埃尔科姆 6131567 梅努菲亚大学工程学院先进材料/太阳能与环境可持续性 (AMSEES) 实验室 5 沙特阿拉伯阿尔哈吉 11942 萨坦·本·阿卜杜勒阿齐兹王子大学科学与人文学院数学系; m.abdelgalil@psau.edu.sa 6 苏伊士运河大学理学院数学系,El-Sheik Zayed,伊斯梅利亚 41522,埃及 * 通信地址:e.basiouny@psau.edu.sa (EAH);dr.maha.tony@gmail.com (MAT)
肽亚单位疫苗通过降低脱靶反应风险和提高诱导适应性免疫反应的特异性来提高安全性。然而,大多数可溶性肽的免疫原性通常不足以产生强大而持久的免疫力。已经开发了许多用于肽抗原的生物材料和运载工具,以在保持特异性的同时改善免疫反应。肽纳米簇 (PNC) 是一种亚单位肽疫苗材料,已显示出增加肽抗原免疫原性的潜力。PNC 仅由交联肽抗原组成,并且已由长度小至 8 个氨基酸的几种肽抗原合成。然而,与许多肽疫苗生物材料一样,合成需要在肽中添加残基和/或共价接合抗原表位内的氨基酸以形成稳定的材料。为实现生物材料的结合或形成而进行的抗原修饰的影响很少被研究,因为大多数研究的目标是将可溶性抗原与生物材料形式的抗原进行比较。本研究调查了 PNC 作为平台疫苗生物材料,以评估肽修饰和具有不同交联化学性质的生物材料形成如何影响表位特异性免疫细胞呈递和活化。通过从模型肽表位 SIINFEKL 脱溶合成了几种类型的 PNC,该表位源自免疫原性蛋白卵清蛋白。SIINFEKL 被改变以在每个末端包含额外的残基,这些残基是经过战略性选择的,以便能够将多种结合化学选项掺入 PNC。使用了几种交联方法来控制使用哪些功能组来稳定 PNC,以及交联的可还原性。评估了这些变体在体内免疫后的免疫反应和生物分布。与单独的未修饰可溶性抗原相比,所有修饰抗原制剂在掺入 PNC 时仍会诱导相当的免疫反应。然而,一些交联方法导致所需免疫反应显著增加,而另一些则没有,这表明并非所有 PNC 的处理方式都相同。这些结果有助于指导未来的肽疫苗生物材料设计,包括 PNC 和各种共轭和自组装肽抗原材料,以最大化和调整所需的免疫反应。
混合玻璃的形成为加工块状金属有机骨架 (MOF) 提供了一种潜在途径,然而,只有少数 MOF 被证明是可熔的。对于不可熔的沸石咪唑酯骨架 ZIF-8,最近发现离子液体 (IL) 的加入可将熔化温度降低到热分解温度以下,从而能够形成 IL@ZIF-8 玻璃。本文报道了 IL 的加入对一些沸石咪唑酯骨架 (ZIF) 和其他 MOF 在加热时的焓响应的影响。对于 ZIF-62、ZIF-67、ZIF-76 和 MIL-68,金属位点的可及性和 MOF 的孔隙率决定了 IL@MOF 复合材料的可熔性。 IL 的加入使得 ZIF-76 玻璃得以形成,并显著降低了 ZIF-62 的熔化温度,但似乎无助于 ZIF-67 或 MIL-68 的熔化(在热分解之前)。尽管 IL 的热稳定性极限在控制 IL@MOF 复合材料的熔化窗口方面起着重要作用,但通过仔细选择熔化温度,可以在很大程度上避免熔化时的热分解和成分变化。IL 的加入似乎为熔化 MOF 提供了一种更通用的途径,但需要仔细适应特定的 MOF 架构。
使用脂质纳米颗粒 (LNP) 系统性地递送信使 RNA (mRNA) 以实现组织特异性靶向具有巨大的治疗潜力。然而,可电离脂质 (脂质类) 的结构特征如何影响其靶向细胞和器官的能力仍不清楚。在这里,我们设计了一类具有不同结构的硅氧烷基可电离脂质,并配制了硅氧烷掺入 LNP (SiLNP) 来控制小鼠体内向肝脏、肺和脾脏的 mRNA 递送。硅氧烷部分增强了 mRNA-LNP 的细胞内化并提高了其内体逃逸能力,从而增强了其 mRNA 递送效率。使用器官特异性 SiLNP 递送基因编辑机制,我们在野生型小鼠的肝脏以及转基因 GFP 和 Lewis 肺癌 (LLC) 肿瘤小鼠的肺部实现了强大的基因敲除。此外,我们展示了通过用肺靶向 Si 5 -N14 LNPs 递送血管生成因子有效恢复病毒感染引起的肺损伤。我们设想我们的 SiLNPs 将有助于将 mRNA 疗法转化为下一代组织特异性蛋白质替代疗法、再生医学和基因编辑。