总而言之,该研究涉及对能够分离和鉴定短核酸片段(尤其是治疗性寡核苷酸)的高级色谱方法的紧迫需求。通过使用C18AR色谱柱进行系统评估,具有不同基序和序列组成的寡核苷酸,以及模仿序列杂质的掺入,可以增强可用的分析工具,以确保基于核酸酸的治疗剂的质量和安全性。
[1] Switzer C,Moroney SE,Benner SA。将新碱基对酶促掺入DNA和RNA中。J Am Chem Soc,1989,111:8322-3 [2] Wang L,Brock A,Herberich B.扩大大肠杆菌的遗传密码。Science,2001,292:498-500 [3] Pinheiro VB,HolligerP。XNA世界:朝着复制和演变的进步合成遗传聚合物。Curr Opin Chem Biol,2012,16:245-52 [4] De Graaf AJ,Kooijman M,Hennink WE等。非天然氨基酸用于特定位点特异性蛋白质结合。Bioconjug Chem,2009,20:1281-95 [5] Schmidt M. Xenobiology:一种新的生活形式,作为最终的生物安全工具。Bioessays,2010,32:322-31 [6] Noren CJ,Anthony-Cahill SJ,Griffith MC等。一种将非天然氨基酸特异性掺入蛋白质中的一般方法。Science,1989,244:182-8 [7] Bain J,Switzer C,Chamberlin R等。 核糖体介导的非标准氨基酸通过遗传密码扩展到肽中。 自然,1992,356:537-9 [8] Matray TJ,Kool等。 DNA中无碱性损伤的特定伴侣。 自然,1999,399:704-8 [9] Hirao I,Kimoto M,Mitsui T等。 一种不自然的疏水基碱对系统:将核苷酸类似物特异性掺入到DNA和RNA中。 NAT方法,2006,3:729-35 [10] Wang W,Takimoto JK,Louie GV等。 遗传编码非天然氨基酸进行细胞和神经元研究。 nat Neurosci,2007,10:1063-72 [11] Leconte AM,Hwang GT,Matsuda S等。 J am Chem Soc,2008,130:2336-43Science,1989,244:182-8 [7] Bain J,Switzer C,Chamberlin R等。核糖体介导的非标准氨基酸通过遗传密码扩展到肽中。自然,1992,356:537-9 [8] Matray TJ,Kool等。DNA中无碱性损伤的特定伴侣。自然,1999,399:704-8 [9] Hirao I,Kimoto M,Mitsui T等。一种不自然的疏水基碱对系统:将核苷酸类似物特异性掺入到DNA和RNA中。NAT方法,2006,3:729-35 [10] Wang W,Takimoto JK,Louie GV等。遗传编码非天然氨基酸进行细胞和神经元研究。nat Neurosci,2007,10:1063-72 [11] Leconte AM,Hwang GT,Matsuda S等。J am Chem Soc,2008,130:2336-43发现,表征和优化不自然的碱基对,用于扩展遗传字母。
Ho, T. Y. K.、Ankit、Febriansyah、B.、Yantara、N.、Pethe、S.、Accoto、D.、Pullarkat、S. A. 和 Mathews、N. (2021)。通过离子液体掺入诱导聚氨酯丙烯酸酯体系中的热可逆光学跃迁,用于可拉伸智能设备。《材料化学杂志 A》,9(23),13615-13624。https://dx.doi.org/10.1039/D1TA02635F
抽象的RNA疫苗被先天免疫系统感知为非自我分子,并且平衡控制免疫激活和疫苗安全性和功效的控制仍然是一个挑战,尤其是对于自我扩增的RNA(SARNAS)而言。掺入修饰的核苷酸已被广泛用于温度RNA疫苗的免疫激活。然而,以前据报道,将修饰的核苷酸掺入sARNAS阻碍抗原表达的情况下。在这里,我们使用了委内瑞拉马脑炎病毒(VEEV)的衰减TC-83菌株的报道器复制子研究改良核苷酸掺入对转染细胞中SarnA复制能力的影响。与未修饰的SARNA相比,ψ和M 1ψ分子在RNA合成中显示出深刻的缺陷。 有趣的是,M 5 C修饰的RNA的RNA合成水平与未修饰的分子相似,将M 5 C定位为Sarna修饰的有前途的候选者。 为了克服RNA合成中ψ或M 1ψ的核苷酸掺入的影响,我们探索了两种替代方法:工程UTR序列和调谐聚合酶保真度。 我们的结果揭示了聚合酶保真度和SARNA扩增之间的先前未欣赏的联系。 总体而言,我们为具有高水平异源蛋白表达和潜在疫苗应用的SARNA设计提供了新的见解。 然而,与其他疫苗平台相比,MRNA疫苗技术面临RNA不稳定性,有效激活RNA转化的先天免疫反应,而限制RNA转换的先天免疫反应通常会导致副作用率更高。ψ和M 1ψ分子在RNA合成中显示出深刻的缺陷。有趣的是,M 5 C修饰的RNA的RNA合成水平与未修饰的分子相似,将M 5 C定位为Sarna修饰的有前途的候选者。为了克服RNA合成中ψ或M 1ψ的核苷酸掺入的影响,我们探索了两种替代方法:工程UTR序列和调谐聚合酶保真度。我们的结果揭示了聚合酶保真度和SARNA扩增之间的先前未欣赏的联系。总体而言,我们为具有高水平异源蛋白表达和潜在疫苗应用的SARNA设计提供了新的见解。然而,与其他疫苗平台相比,MRNA疫苗技术面临RNA不稳定性,有效激活RNA转化的先天免疫反应,而限制RNA转换的先天免疫反应通常会导致副作用率更高。基于RNA分子的引入疫苗和免疫疗法依赖于RNA作为信使(mRNA)的生物学作用,用于宿主细胞的蛋白质翻译,以实现天然有效载荷表达,包括翻译后修饰,多媒体蛋白质复合物的组装以及适当的运输到亚细胞位置。通过体外转录,与其他基于载体的平台和灭活病毒疫苗相比,通过体外转录的快速开发和简单的生产过程,以及可靠的有效性是基于RNA的疫苗开发平台的主要优势[1-3]。不同的策略旨在通过控制免疫激活或改善翻译来增加RNA分子递送后抗原表达的产率[1]。首先,在RNA合成模拟内源性mRNA分子后,在体外转录或酶上掺入1型或2个帽,限制了内在的免疫反应。第二,可以优化5'和3'未翻译区域(UTR),以提高转化效率和控制免疫反应。Third, incorporation of modified nucleotide analogues including 5-methylcytidine (m 5 C), N6-methyladenosine (m 6 A), 5-methyluridine (m 5 U), 2-thiouridine (s 2 U) or pseudouridine ( ψ ) is a commonly used strategy aimed at reducing the activation of the immune response in transfected cells [4].此外,ψ和N1-甲基丙啶(M1ψ)增加了修饰mRNA的平移能力[5]。也将采用不同的策略,例如编码感兴趣蛋白质或增加poly(a)尾巴长度的开放阅读框架(ORF)的密码子优化,也被用不同的结果应用。最后,基于自我扩增的RNA(SARNA)的疫苗设计提供了降低剂量需求的手段,这是由于SARNA在细胞细胞质中复制的能力,
抽象的超高效果纤维增强混凝土(UHPFRC)是一种新型的建筑材料,表现出出色的机械和耐用性特征。最近,与其他类型的混凝土相比,UHPFRC具有显着优势。这项调查对用于开发UHPFRC的基本原理,原料,生产和制造技术进行了深入的评论。UHPFRC的设计以核心原则为指导,包括增强结构密度,微观结构的完善,孔隙率的降低和韧性增强。选择成分材料对UHPFRC的特征,生产中使用的技术及其固化过程的复杂性具有重大影响。可以通过掺入广泛获取的补充胶结成分(例如稻壳灰(RHA)和纳米颗粒,而不是胶结)以及掺入硅烟料来实现材料成本而不损害强度的材料成本。与环境固化相比,UHPFRC中升高温度固化的使用导致更紧凑的混凝土基质和提高的性能。但是,这种方法从根本上限制了UHPFRC的潜在应用。因此,UHPFRC生产的当前趋势正在朝着使用随时可用的原材料,传统铸造方法的应用以及在环境温度下实施固化过程的趋势。本评论试图加深我们的
抽象动机:核糖核苷单磷酸盐(RNMP)是嵌入基因组DNA中的最丰富的非标准核定体。如果无法控制DNA中RNMP的存在,则可能导致基因组不稳定性。DNA中RNMP的实际正函数主要未知。考虑到RNMP嵌入与各种疾病和癌症之间的关联,近年来,DNA中RNMP的嵌入现象已成为近年来的重要研究领域。结果:我们介绍了RNMPID数据库,这是第一个揭示RNMP插入特征,链偏置和首选掺入模式的数据库,这些数据库是来自不同遗传背景的细菌至人类细胞的基因组DNA中的首选掺入模式。RNMPID数据库使用不同RNMP映射技术的数据集。它为研究人员提供了坚实的基础,以阐明多种来源的基因组DNA中嵌入的RNMP的特征及其与细胞功能的关联,以及将来的疾病。它还显着使研究人员在遗传学和基因组学领域的研究人员旨在将研究与RNMP嵌入数据融为一体。可用性:RNMPID可以在网络上自由访问,网址为https://www.rnmpid.org。联系人:xph6113@gmail.com或storici@gatech.edu
摘要。由于其短暂的寿命,食物包装通过在环境中的迅速积累而对环境污染产生了重大贡献。为了减轻这些影响并提供更环保的食品包装解决方案,研究人员创建了可生物降解和生物基的聚合物,目前正在推出市场。本研究总结了有关将海藻掺入食品包装和活动包装中的研究状态。为了强调多糖的好处并引起人们对当前研究的限制的关注,本研究还提出了海藻掺入对一系列特性的影响的提要,包括化学,物理,热,抗氧化剂,抗氧化剂,抗菌和机械属性,除了发行活跃的化合物。包括在海藻中发现的多种多糖,具有增强这些聚合物的抗菌,热和机械性能的潜力。除了增加亲水性和机械性能(例如拉伸强度和伸长时)外,他们还建议将其用作主动包装。这是由于海藻的抗氧化特性而导致的,从而抑制脂质氧化并降低毒性,诱变或致癌自由基,从而延长了食品的营养价值和货架寿命。某些种类的海藻已经表现出阻碍被分类为革兰氏阳性和革兰氏阴性细菌的扩散的能力。因此,它们作为抗菌包装的前瞻性应用。
慢病毒载体(LV)的有效且健壮的下游加工对于产生高质量的基因治疗载体至关重要。在LV生产中使用的传统核酸酶通常会导致最终药物中的次优载体回收和较高的残留DNA水平。该项目旨在识别和整合替代核酸酶,即盐活性核酸酶(SAN)和中盐活性核酸酶(M-SAN),将其纳入OXB的LV制造工作流程中,以增强矢量恢复并提高整体产品质量。对替代核酸酶(例如最佳pH)(参见图A)和盐缓冲液(参见图B)条件的关键特征进行了评估,并将其纳入下游过程(请参见图C),并与传统的基于核酸酶的下游过程进行了比较。我们的发现表明,在典型的LV制造条件下,使用SAN和M-SAN的使用表现出卓越的活动。值得注意的是,在纯化过程中掺入替代核酸酶会减少载体聚集,并在挑战性的无菌过滤步骤中提高了载体恢复左右的载体恢复。最重要的是,这些核酸酶的掺入导致最终药物中残留DNA的水平明显较低,以解决基因治疗应用的关键质量属性。
具有副作用。并且总是癌症找到一种克服单一化学物质作用的方法。您正在处理数百万个细胞,只需要一个或两个突变才能使癌症保持生长。使用FMD,对人体的整体系统产生了多种影响,而不仅仅是对癌细胞。 因此,在肝脏上,肿瘤可以直接进入肠道。 FMD改变了肝生理学本身。 我们表明肿瘤找到了劫持以糖原形式存储能量的关键系统的方法。 而不是肝细胞,肿瘤ard积葡萄糖并储存其能量。 随着FMD的掺入,肿瘤被直接的能源耗尽。 因此,FMD可以在治疗时饿死肿瘤,从而促进耐药性。” Madak Erdogan解释说使用FMD,对人体的整体系统产生了多种影响,而不仅仅是对癌细胞。因此,在肝脏上,肿瘤可以直接进入肠道。FMD改变了肝生理学本身。我们表明肿瘤找到了劫持以糖原形式存储能量的关键系统的方法。而不是肝细胞,肿瘤ard积葡萄糖并储存其能量。随着FMD的掺入,肿瘤被直接的能源耗尽。因此,FMD可以在治疗时饿死肿瘤,从而促进耐药性。” Madak Erdogan解释说
将抗菌特性掺入纺织品中是广泛追捧的方面,可以将银纳米颗粒(AGNP)用于此目的。在这项工作中,评估了将AGNP纳入棉布织物的策略。为此,提出了基于AGNPS和Kappa-Carragen(K-CA)复合材料的抗菌纺织品涂料。通过直接在K-CA溶液中加热银前体(AGNO 3)来获得一种用于纺织品烹饪的复合膜,以进行绿色合成和原位稳定AGNP。棉底物被添加到加热溶液中,以使其表面浸渍和冷却后的水凝胶膜形成。也已经测试了织物上AgNP的直接合成。结果表明,与受到直接AGNPS掺入的纺织品相比,K-CA/AGNPS复合涂层的应用可以达到织物表面上的银负荷的两倍以上。此外,水中的银释放试验表明,用K-CA/AGNP涂层的棉花达到了较高的Ag +水平。因此,使用琼脂扩散方法对金黄色葡萄球菌(SA)细菌进行接种试验表明,复合材料覆盖的材料导致抑制晕片明显更大。这表明将复合材料用作棉织物涂层改善了其针对SA的抗菌活性。关键字:抗菌织物; Kappa-Carragen;银纳米颗粒;棉布;纺织恢复。