摘要 :脑内神经递质多巴胺 (DA) 的含量异常与帕金森病、阿尔兹海 默症等神经系统类疾病的发生发展密切相关,精准、实时监测其脑 内含量可作为临床诊疗的重要参考。电化学分析法具备成本低、响 应快、可实现体内实时监测等优势。然而,脑内复杂环境中蛋白吸 附、多物质共存等因素会极大干扰多巴胺的定量分析,这对电极的 灵敏度、选择性和稳定性提出了极高的要求。因此,研发出满足要 求的电极材料是实现多巴胺电化学检测临床应用的关键。掺硼金刚 石 (BDD) 电极生物相容性好、背景电流低、电势窗口宽、抗吸附性 强、化学稳定性高,相较于易团聚、易脱落而失效的金属纳米颗粒 或电阻较大的高分子材料, BDD 电极更具潜力解决上述多巴胺检测 的难点问题。然而, BDD 电极虽能有效抵御蛋白吸附,但在多巴胺 的选择性检测方面存在不足: BDD 电极表面缺乏能够高灵敏度、高 选择性检测多巴胺分子的官能团。因此,在保持 BDD 本征特性的基 础上,系统研究 BDD 电极表面改性与功能化修饰对电化学检测多巴 胺的选择性、灵敏度和稳定性的影响机理,是 BDD 电极实现临床应 用的关键。基于此,本论文从 BDD 膜电极的功能性改性与修饰到 BDD 微电极体内检测,系统研究了 BDD 膜电极在多巴胺电化学检测 中的作用机理,揭示了 BDD 电极界面性质对多巴胺分子氧化过程的 影响规律,所得具体结论如下: (1) 针对 BDD 电化学活性较低的问题,采用高温溶碳刻蚀和滴 涂修饰方法,在 BDD 电极表面刻蚀纳米孔洞并修饰 Nafion 选择性透 过膜( NAF ),制备了 Nafion 修饰的多孔 BDD 复合电极 NAF/pBDD ; 研究了该复合电极对多巴胺的电化学检测机理,揭示了 NAF/pBDD 复合电极比 BDD 电极具有更多活性位点的原因,同时探究了 Nafion 膜对多巴胺和抗坏血酸的作用机制;该电极针对多巴胺的检测限 (42 nM) 和检测线性范围 (0.1 ~ 110 μM) 相较于 BDD 均得到了有效改善。 (2) 针对 BDD 电极对多巴胺选择性较弱的问题,在 pBDD 表面 修饰活性更高的纳米炭黑颗粒 (CB) ,制备了 NAF-CB/pBDD 复合电 极,研究了炭黑颗粒的加入对主要干扰物抗坏血酸 (AA) 电化学响应 的影响机理,揭示了该电极在高浓度、多干扰物并存环境下对多巴 胺的选择性检测机制。结果表明,该电极可有效将干扰物抗坏血酸 的氧化电位提前以减少对多巴胺信号的干扰,检测限 (54 nM) 和检测
图 3 掺杂调控 vdW 异质结理论研究典型成果( a )结构优化后的 C 、 N 空位及 B 、 C 、 P 、 S 原子掺杂 g-C 3 N 4 /WSe 2 异质结 的俯视图 [56] ;( b )图( a )中六种结构的能带结构图 [56] ;( c )掺杂的异质结模型图、本征 graphene/MoS 2 异质结的能带结 构及 F 掺杂 graphene/ MoS 2 异质结的能带结构 [57] ;( d ) Nb 掺杂 MoS 2 原子结构的俯视图和侧视图以及 MoS 2 和 Nb 掺杂
https://doi.org/10.26434/chemrxiv-2024-rf0kh-v2 orcid:https://orcid.org/0000-0000-0002-7542-1147不受chemrxiv的内容而不是同行评审的内容。许可证:CC由4.0
Tuning structural, electrical, dielectric, and magnetic properties of Mg-Cu-Co ferrites via dysprosium (Dy 3+ ) doping Maria Akhtar a , M. S. Hasan b , Nasir Amin a , N. A. Morley c , Muhammad Imran Arshad a * a Department of Physics, Government College University, Faisalabad, 38000, Pakistan.B物理系,拉合尔大学,拉合尔1公里,拉合尔路1公里,巴基斯坦54000。 c材料科学与工程系,英国谢菲尔德大学,S1 3JD。 *通讯作者:miarshadgcuf@gmail.comB物理系,拉合尔大学,拉合尔1公里,拉合尔路1公里,巴基斯坦54000。c材料科学与工程系,英国谢菲尔德大学,S1 3JD。 *通讯作者:miarshadgcuf@gmail.comc材料科学与工程系,英国谢菲尔德大学,S1 3JD。*通讯作者:miarshadgcuf@gmail.com
摘要:将移动载体掺杂到普通的半导体中,例如SI,GAAS和ZNO是电子和光电子旋转的有利步骤。The recent emergence of a class of “ quantum materials ” , where uniquely quantum interactions between the components produce speci fi c behaviors such as topological insulation, unusual magnetism, superconductivity, spin − orbit-induced and magnetically induced spin splitting, polaron formation, and transparency of electrical conductors, pointed attention to a range of doping-related phenomena associated with chemical classes that di ff er来自传统的半导体。这些包括宽间隙氧化物,包含开孔D电子的化合物以及由重元素制成但具有显着带隙的化合物。在过去二十年中,在半导体物理学子场中开发的掺杂的原子电子结构理论最近已扩展并应用于量子材料。本评论的重点是解释从凝结物质理论的角度对量子材料的兴奋剂现象学及其在量子材料中的特殊性的基本理解所需的主要概念,并希望能够向化学家锻造桥梁,从而使该模拟中一些最有趣的化合物的合成。
图2。在QFEG上重新掺杂的MOS 2中的8%重掺杂的MOS 2中的rhenium簇和条纹形成:多层重掺杂MOS 2岛的恒定电流STM概述图像。红色和橙色虚线分别表示岛边缘和隔离边界。(b)MOS 2岛的结构模型以快速(稀释浓度)和缓慢(密集的浓度)生长方面表示。(c,d)(a)中插图中显示的岛单层不同区域中的恒定电流STM地形。从浓度和分布的突然变化中鉴定出隔离边界。e)中性(REMO 0)的STM地形和单层Re-MOS 2中的带正电(REMO +)RE原子。(f)STM地形突出了中性(蓝色圆圈)和带正电荷(洋红色圆圈)的分布,以及单层Re-Mos 2膜中的硫位于硫磺位点缺陷(橙色圆圈)。
[1] N. W. Ashcroft,金属氢:高温超导体?,Phys Rev Lett 21,1748(1968)。[2] V. L. Ginzburg,宇宙中的超流量和超导性,苏联物理学USPEKHI 12,241(1969)。[3] L. Boeri,R。Hennig,P。Hirschfeld,G。Profeta,A。Sanna,E。Zurek,W。E. Pickett,W。E. Pickett,M。Amsler,R。Dias,M。I. Eremets等人,2021室 - 室温超导性超级保障路线图34,183002(202222222)。[4] A. P. Drozdov,M。I。Eremets,I.A. Troyan,V。Ksenofontov和S. I. Shylin,在硫氢系统高压的203开尔文处的常规超导性,Nature 525,73(2015)。[5] M. Somayazulu,M。Ahart,A。K。Mishra,Z。M. Geballe,M。Baldini,Y。Meng,Y。Meng,V。V。V. V. V. V. V. V. V. V. V. V. V. Hemley和R. J. Hemley,超过260 K高于260 K的证据,超过260 K,在巨大的超氢化物中,Megabar Pressure,Phys Rev Lett 122,022,027001(2019)。[6] A. P. Drozdov,P。P. Kong,V。S. Minkov,S。P. Besedin,M。A. Kuzovnikov,S。Mozaffari,L。Balicas,L。Balakirev,F。F. F. F. F. E. Graf,D。E. Graf,V。B. B. B. Prakapenka等人,在250 k的超级范围内,lanthanum hystrys hystrys hystry pressiver native pressiver native pressiver infernation natural pressery prastery natural pressery prestery prestery 5699999999(56)。[7] D. V. Semenok,A。G。Kvashnin,A。G。Ivanova,V。Svitlyk,V。Y。Fominski,A。V。Sadakov,O.A. Sobolevskiy,V。M。Pudalov,I。A. Troyan和A. R. Oganov,hydride thh10的161 K的超导性:合成和性能,今天的材料33,36(2020)。[8] W. Chen, D. V. Semenok, X. Huang, H. Shu, X. Li, D. Duan, T. Cui, and A. R. Oganov, High-Temperature Superconducting Phases in Cerium Superhydride with a T c up to 115 K below a Pressure of 1 Megabar , Phys Rev Lett 127 , 117001 (2021).[9] I. div>A. Troyan,D。V. Semenok,A。G. Kvashnin,A。V. V. Sadakov,O。 div> A. Sobolevskiy,V。M. Pudalov,A。G. Ivanova,V。B. Prakapenka,E。Greenberg,A。G. G. G. G. Gavriliuk等YH 6,Adv Mater 33,2006832(2021)。 [10] P. Kong,V。S. Minkov,M。A. Kuzovnikov,A。P. Drozdov,S。P. Besedin,S。Mozaffari,L。 div>A. Troyan,D。V. Semenok,A。G. Kvashnin,A。V. V. Sadakov,O。 div>A. Sobolevskiy,V。M. Pudalov,A。G. Ivanova,V。B. Prakapenka,E。Greenberg,A。G. G. G. G. Gavriliuk等YH 6,Adv Mater 33,2006832(2021)。[10] P. Kong,V。S. Minkov,M。A. Kuzovnikov,A。P. Drozdov,S。P. Besedin,S。Mozaffari,L。 div>
在本研究中,我们利用傅里叶变换红外光谱 (FTIR) 和拉曼光谱法分析了硅 (n-Si) 样品及其含镝 (n-Si-Dy) 组合物的结构和光学特性。FTIR 光谱中的特征峰如 640 cm -1 (Si-H 模式) 和 1615 cm -1 (垂直拉伸模式) 被识别,表明了材料的结构特征。n-Si-Dy 光谱中在 516.71 cm -1 和 805 cm -1 处出现的额外峰表明镝对材料结构和缺陷的影响。对频率范围 (1950–2250 cm -1 ) 的检查进一步证实了与缺陷和与镝相互作用相关的局部振动模式。在 2110 cm -1 和 2124 cm -1 处发现了与 Dy-Dy 拉伸以及与硅相互作用相关的峰。拉曼光谱分析表明,在退火过程中形成了硅纳米晶体,XRD 结果证实了这一点。所获得的结果为了解镝对硅材料结构和性能的影响提供了重要的见解,这可能在光电子学和材料科学中得到应用。关键词:硅、镝、稀土元素、拉曼散射、扩散、热处理、温度 PACS:33.20.Ea,33.20.Fb