当前研究的目的是解决两个重大的环境清理问题。第一个涉及回收用过的锂离子电池(LIB),第二个涉及在水中发现的抗生素的降解。可以从也已与硼(BRGO)掺杂的用过的Libs合成还原的氧化石墨烯(RGO)。当BRGO和可见的活性BI 2 WO 6(BWO)混合在一起时,形成纳米复合材料(BWO/BR)。结构,形态和光谱特征证实了BRGO,BWO和BWO/BR纳米复合材料的序列。抗生素四环素盐酸(TCH)和环丙沙星(CIP)已通过所有三种新制成的材料进行了测试,以进行光催化降解。与BRGO结合后,发现将BWO(2.73 eV)的带隙降低至2.22 eV。在可见光下,BWO/BR表现出升高的TCH降解(93%),发现在存在阳光下会增加(95%)。在存在BWO/BR的情况下,据报道,CIP的降解分别为72%,95%和97.5%,在紫外线,可见和阳光下分别为。在存在BWO/BR的情况下,检查了反应条件,例如pH,催化剂和初始浓度的量,以降解TCH和CIP。已经发现,pH 6和8分别是TCH和CIP的理想选择。还进行了药物废水中TCH和CIP降解的研究;在存在BWO/BR和可见光的情况下,降解效率分别确定为69%和72%。在暴露于可见光之前和之后,在90分钟之前和之后,检查了在存在BWO/BR的情况下检查所有大肠杆菌,单核细胞增生菌,伤寒链球菌和金黄色葡萄球菌的所有抑制区域,在此期间,观察到接近零的抑制区域。进行了使用液相色谱 - 质谱法(LC-MS)进行研究以鉴定TCH和CIP降解的中间产物。
19427611,2023,11-12,从https://analytilticsciencejournals.onlinelibrary.wiley.com/doi/10.1002/dta.3489下载,由saechsissische landesbibliothek,Wiley在[24/06/2024/206/2024]。有关使用规则,请参见Wiley Online Library上的条款和条件(https://onlinelibrary.wiley.com/terms-and-conditions); OA文章由适用的Creative Commons许可
纳米技术是科学、工程和技术的一个分支,涉及原子或分子尺度上小于 100 纳米物质的尺寸和公差。纳米粒子由于其独特的尺寸依赖性而具有广泛的应用(Lu 等人,2012 年)。磁性纳米粒子因其广泛的应用而备受关注,例如蛋白质和酶的固定、生物分离、免疫测定、药物输送和生物传感器。纳米粒子由于尺寸小而具有较高的表面积与体积比,这赋予了纳米粒子非常独特的特性(Sagadevan 等人,2015 年)。纳米粒子独特的化学和物理性质使其非常适合设计新的和改进的传感设备;尤其是电化学传感器和生物传感器(Wang 等人,2016 年)。纳米粒子的重要功能包括固定生物分子、催化电化学反应、增强电极表面与蛋白质之间的电子转移、标记生物分子甚至作为反应物 (Luo et al. 2006))。一般来说,金属氧化物纳米粒子是无机的。Fe、Ni、Co、Mn 和 Zn 等各种纳米粒子是广泛接受的磁性材料,可用于磁传感器、记录设备、电信、磁性流体和微波吸收器等广泛应用 (Zhu et al. 2014;Poonguzhali et al. 2015)。在各种金属氧化物纳米粒子中,二氧化锰是一种重要的 P 型过渡金属氧化物
在光学和电化学等多个领域工作的传感器具有使生物传感比在单一领域工作的传感器更有效的特性。为了将这些领域结合到一个传感设备中,需要提供一组特定特性的材料。本文讨论了氟掺杂氧化锡 (FTO) 薄膜,它具有光学功能以引导损耗模式,同时具有电化学功能,即作为工作电极的导电材料。分析了基于 FTO 的光纤损耗模式谐振 (LMR) 传感器在光学和电化学领域的性能。此外,为了增强传感器的适用性,还开发了类似探针的反射配置。研究发现,FTO 可以被视为其他薄导电氧化物 (TCO) 的有前途的替代品,例如氧化铟锡 (ITO),它迄今为止经常应用于各种双域传感概念中。在光学领域,FTO-LMR 传感器对外部折射率 (RI) 的灵敏度在 1.33 – 1.40 RIU 的 RI 范围内达到 450 nm/RIU。反过来,在电化学领域,1,1 ′-二茂铁二甲醇溶液中 FTO 电极的响应已达到 RedOx 电流低峰峰分离。与 ITO-LMR 传感器相比,FTO-LMR 传感器在很宽的电位范围内表现出施加电位对 LMR 波长偏移的显著影响。使用链霉亲和素作为目标生物材料表明,FTO-LMR 方法的无标记生物传感应用是可能的。双域功能允许在两个域中接收到的读数之间进行交叉验证,并且在应用跨域相互作用时可以增强光学灵敏度。
由于普克尔斯效应和克尔效应的结合,电光 (EO) 聚合物的折射率可以通过外部电场改变。在由基质聚合物和嵌入的 EO 发色团组成的客体-主体系统中,普克尔斯效应依赖于可电极化的 EO 发色团的优先空间取向,这通常是通过在施加外部场的同时在高温下极化 EO 聚合物材料而引起的。EO 发色团由通过 π 电子共轭桥相互作用的电子给体和受体基团组成,其特性是 EO 聚合物设计的重要因素。为了最大程度地发挥普克尔斯效应,具有高玻璃化转变温度和分子尺寸相对较大的 EO 发色团的聚合物具有优势,因为它们可以提供最佳的取向稳定性 [ 1 ],这不仅在客体-主体系统中实现,而且在 EO 发色团与主体聚合物共价结合的材料中也实现了 [ 2 ]。在极化过程中,通过热 [ 3 ] 或光化学 [ 4 ] 交联主体聚合物也可提高取向稳定性。电光聚合物在电信领域的应用已被广泛探索 [ 5-7 ],其快速时间响应、低光损耗、高电光活性、稳定性和易于加工等特点已被用于空间光调制器 (SLM) 的开发 [ 8 ]。因此,最近的大部分研究活动都集中在开发近红外波长范围的电光聚合物 [ 9-12 ]。虽然关于可见光范围的电光聚合物的报道相对较少,但此类材料的未来应用可能在于可调光学滤波器和超声波的光学检测,例如用于生物医学光声 (PA) 成像研究的可调法布里-珀罗 (FP) 传感器 [ 13-16 ]。对于此类应用,需要在可见光波长区域具有高度透明性的新型电光聚合物。传统的近红外 EO 发色团虽然通常具有较高的
其中,S 为塞贝克系数,σ 为电导率,κ 为热导率,T 为绝对温度。ZT 用于比较热导率不同材料的热电性能。而功率因数(PF = S2σ)则比较热导率相近材料的热电效率。[1–7] 目前,Bi 2 Te 3 、PbTe 和 SiGe 等无机化合物占据热电市场主导地位。[8–12] 然而,这些化合物的使用存在若干缺点,例如毒性、原材料稀缺、成本高和不可持续。因此,人们对寻找可替代的可持续、高度丰富、低成本和无毒的材料有着浓厚的兴趣。有机半导体(例如:导电聚合物、碳质材料和纳米复合材料)由于其优越的性能(例如可用性、低热导率、易于化学改性和大规模生产)而提供了一种新兴的替代方案。通过掺杂 PEDOT 来提高导电聚合物的热电性能,可使 ZT 值达到 0.2–0.4。[13] 碳纳米结构,特别是碳纳米管 (CNT) 在通过以下方法制备的多层系统中表现出优异的热电行为
用于负电容场效应晶体管的缺氧无唤醒 La 掺杂 HfO2 铁电体的水性制备方法 / Pujar, Pavan;Cho, Haewon;Kim, Young-Hoon;Zagni, Nicolo;Oh, Jeonghyeon;Lee, Eunha;Gandla, Srinivas;Nukala, Pavan;Kim, Young-Min;Alam, Muhammad Ashraful;Kim, Sunkook。- 收录于:ACS NANO。- ISSN 1936-0851。- 17:19(2023),第 19076-19086 页。[10.1021/acsnano.3c04983]
将氧等离子体处理的石英晶片切割成1cm2用于PPMS(霍尔、磁阻、温变电导)和XPS测量中的所有电学测量。由于尺寸要求,将氧等离子体处理的ITO基板切割成0.5 cm * 0.5 cm用于PES和IPES测量,将氧等离子体处理的石英晶片切割成0.6 cm * 0.4 cm用于高场霍尔测量。所有基板在使用前分别在丙酮和异丙醇中通过超声波清洗工艺清洗10分钟。将C 14 -PBTTT溶液以3000 r/min的转速旋涂到相应的基板上,形成厚度约25nm的PBTTT薄膜,然后将获得的薄膜在150°C下退火10分钟,让其冷却至室温。将Cytop溶液旋涂到所有掺杂后的电学测量薄膜上进行封装,再通过光刻和氧离子刻蚀实现霍尔棒结构的图形化。掺杂工艺
新的抗Hibitmagne®珠子为您提供了快速,方便的程序,以使用IP和CO-IP方法从哺乳动物,酵母和细菌细胞中富集hibit标记的蛋白质和相关蛋白质复合物。因此,该产品为蛋白质生物学和基于质量的蛋白质组学研究打开了更多的可能性。高亲和力抗体可确保具有最小非特异性背景的特定标签特异性结合。Drkbit肽可用于轻轻地从抗Hibit magne珠子中洗脱hibit标记的蛋白质。
Ambikapur-497001,印度Chhattisgarh,4 M.Sc.-Student,化学系,Pt。Ravishankar Shukla大学,Raipur,Chhattisgarh摘要:这项研究研究了掺杂的钛酸钡(Batio 3)陶瓷的结构,介电和光学性质,突显了它们用于高级电子应用的潜力。钛酸钡是一种突出的铁电材料,以系统的方式与各种元素一起掺杂,以改善其功能属性。通过X射线衍射(XRD)的方式描述了晶体结构和相位发展,展示了掺杂如何影响晶格参数和相位稳定性。介电特征,例如损失切线和介电常数,揭示了掺杂剂对介电行为和铁电特性的影响。光学研究,包括UV-VIS光谱法检查了带隙和光透射率,这对于光电子用途至关重要。发现,靶向掺杂可以有效地改变钛酸钡陶瓷的结构,介电和光学特性,使其非常适合电容器,传感器和其他电子设备。这项研究为优化钛酸钡陶瓷提供了宝贵的见解,以在各种技术应用中实现卓越的性能。也已经观察到某些掺杂剂减少了带隙的能量,从而导致更好的光学透明度和可调折射率,这对于光电应用非常有价值。关键字:钛盐(Batio 3),掺杂陶瓷,介电特性,光学特性,1。引言钛酸钡(Batio 3)钙钛矿结构的陶瓷,由于其出色的介电,铁电和压电性特性,一直是电子应用中的基础材料[1]。这些独特的特征使Batio 3在各种电子设备中必不可少,包括多层陶瓷电容器(MLCC),热敏电阻,执行器和传感器[4]。该材料的高介电常数和可调节的铁电特性对电容器特别有益,在该电容器中,有效的能量存储至关重要[10]。但是,随着电子技术的发展,越来越多的需求以进一步增强和优化Batio 3的内在特性,以满足