聚合物也已成为有机热电学的潜在候选物,[7,8]有可能提供柔性,大面积和低成本的能源产生或加热 - 可吸引人的应用,例如,可穿戴能量收获,目前是传统的脆性和通常的毒性或稀有毒性或稀有层次的材料,这些材料目前是不可能的。ther- moelectric材料通过优异ZT = S2σT /κ的无量纲数进行评估,其中S,σ,T和κ分别代表塞贝克系数,电气有效性,绝对温度和热电导率。大多数连接的聚合物的特征是低κ值,从本质上有助于高ZT。通过P型共轭聚合物(例如ZT> 0.25)(PEDOT)(PEDOT)(pEDOT)等最广泛的热电研究证实了这一点。[9,10] P型和N型热电材料的性能应在任何实际应用之前彼此配对。ever,基于N型共轭聚合物的热电设备在功率因数方面仍然远低于其P型对应物(s2σ)。[11,12]因此,有效的发展
摘要:共轭聚合物是多种下一代电子设备中使用的多功能电子材料。这种聚合物的效用在很大程度上取决于其电导率,这既取决于电荷载体(极性)的密度和载体迁移率。载流子的迁移率又受极性柜台和掺杂剂之间的分离而在很大程度上控制,因为柜台可以产生库仑陷阱。在先前的工作中,我们显示了基于十二烷(DDB)簇的大掺杂剂能够减少库仑结合,从而增加晶状体(3-己基噻吩-2,5-二苯基)的载流子迁移率(P3HT)。在这里,我们使用基于DDB的掺杂剂研究化学掺杂的降级(RRA)P3HT的极化子 - 反子分离的作用,这是高度无定形的。X射线散射表明,DDB掺杂剂尽管大小较大,但在掺杂过程中可以部分订购RRA P3HT,并产生与DDB掺杂的RR P3HT相似的掺杂聚合物晶体结构。交替场(AC)霍尔测量值还确认了类似的孔迁移率。我们还表明,大型DDB掺杂剂的使用成功降低了无定形聚合物区域的极性和柜台的库仑结合,从而在RRA P3HT膜上呈77%的掺杂效率。DDB掺杂剂能够生产具有4.92 s/cm电导率的RRA P3HT膜,该值比3,5,6-Tetrafluoro-7,7,7,8,8-8,8-四乙酸氨基甲烷(F 4 TCNQ)(F 4 TCNQ),传统的载量约为200倍。这些结果表明,在共轭聚合物的无定形和半晶体区域量身定制掺杂剂,是增加可实现的聚合物电导率的有效策略,尤其是在具有随机区域化学的低成本聚合物中。结果还强调了掺杂剂的大小和形状对于产生能够在较少有序的材料中电导的库仑未结合的移动极性的重要性。
有机半导体(如共轭聚合物)具有优异的光学和电子特性,以及化学/结构可调性、良好的机械性能和溶液加工性,正在成为广泛商业化的无机半导体的可行替代品。1,2目前限制有机材料性能的一个缺点是其电子电导率低。通过在共轭聚合物主链上添加额外的正电荷或负电荷,可以通过电化学方式或使用分子掺杂剂对材料进行掺杂,可以将电子电导率提高几个数量级。3–6掺杂共轭聚合物在电致变色窗、光电子学、热电学和生物电子学方面显示出巨大的应用前景。3,4人们开发了各种分子掺杂方法,例如在薄膜沉积之前将聚合物和掺杂剂在溶液中共混合,或者依次通过气相或溶液相将掺杂剂添加到聚合物薄膜上。4,7分子掺杂剂起着双重作用。首先,它与共轭聚合物发生电荷转移,导致导电电荷的形成;其次,需要离子化的掺杂剂来补偿聚合物主链上的电荷。共轭聚合物表现出混合
在稀土(重新)中(用于纤维激光器的掺杂光纤),折射率(RIP)的准确控制和表征和活动掺杂剂曲线(ADP)对于纤维激光器的性能至关重要,就效率和整体性能而言。尽管有一些方法可以监测纤维预成型中的RE浓度,但这些方法具有破坏性。尤其是,通过将预形成型预成式切成薄盘并检查YB浓度及其在磁盘中的分布,通过电子探针微分析方法来进行YB浓度及其沿横向和纵向分布的测量值。EPMA。 尽管这些方法提供了对掺杂剂浓度的准确评估,但由于其切片而破坏了它,因此它使得无效。EPMA。尽管这些方法提供了对掺杂剂浓度的准确评估,但由于其切片而破坏了它,因此它使得无效。
Bharath Dyaga,Antoine Lemaire,Shubhradip Guchait,Huiyan Zeng,Bruno Schmaltz等。掺杂剂位置在交替的供体供体 - Acceptor拷贝剂的半晶结构中的影响对极性交换P极性交换P→N机械。材料杂志化学杂志C,2023,11(47),第16554-16562页。10.1039/D3TC02416D。 hal-0460287210.1039/D3TC02416D。hal-04602872
有机发光二极管 (OLED) 在过去二十年里彻底改变了显示器行业 1 。尽管被广泛应用,但这些设备仍有很大改进空间,例如,现有技术的能源效率。市场迫切需要更深的红色和更高的色纯度,而传统发射器很难满足这一需求 2、3 。需要一类具有更长波长的新型红色掺杂剂,但简单的能隙定律考虑可以解释,由于非辐射衰减增加导致的效率降低是不可避免的 4、5 。因此,发光效率是商用红色掺杂剂最关键的材料特性。由于发射特性的微小变化往往会加剧效率下降,可能的解决方案是考虑主体-掺杂剂组合以更好地取向过渡偶极矩 6、7 ,或用功能团装饰发射极而不会过度改变发色团支架 8 ,但迄今为止尚未取得决定性的进展。一种潜在的解决方案是采用带有三个双齿配体的杂配体 Ir 配合物,其中两个主要负责发光,一个是支持辅助配体,不直接参与磷光。目标是通过改变辅助配体来消除非生产性衰变途径,从而对发光特性产生最小的影响 9 。在各种红色掺杂剂中,携带双齿苯基吡啶 (ppy) 型配体的 Ir(III) 配合物成为一类重要的发射体 10 ,典型的辅助配体是乙酰丙酮 (acac) 衍生物 2 。尽管使用辅助配体来控制掺杂剂化学行为的前景很诱人,但成功实施涉及辅助配体的合理设计策略却极为罕见 11 。在此采用详细的计算模型,我们发现除了延长 Ir – N 键之外,涉及配位层角度的结构变化也会导致辐射态的不良失活。利用这些精确的计算机模型的见解,我们推导出并通过实验证实了一种通用的设计策略。虽然 DFT 模型不一定准确,但它们提供了易于解释和概念化的精确信息。
单壁碳纳米管 (SWCNT) 具有可调的光电特性和高载流子迁移率,是下一代能量收集技术(包括热电发电机)的理想材料。控制这些独特的 1D 纳米材料中的费米能级通常由 SWCNT 与电子或空穴接受物质之间的电荷转移相互作用实现。掺杂 SWCNT 网络的传统方法通常涉及将分子氧化还原掺杂剂物质扩散到固态薄膜中,但溶液相掺杂可能为载流子传输、可扩展性和稳定性提供新途径和/或好处。在这里,我们开发了使用 p 型电荷转移掺杂剂 F 4 TCNQ 对聚合物包裹的高浓缩半导体 SWCNT 进行溶液相掺杂的方法。这使得掺杂的 SWCNT 墨水可以铸成薄膜,而无需额外的沉积后掺杂处理。我们证明在 SWCNT 分散过程的不同阶段引入掺杂剂会影响最终的热电性能,并观察到掺杂剂改变了聚合物对半导体和金属 SWCNT 的选择性。与致密的半导体聚合物薄膜相比,溶液相掺杂通常会导致形态破坏和 TE 性能比固态掺杂更差,而溶液掺杂的 s-SWCNT 薄膜的性能与固态掺杂的薄膜相似。有趣的是,我们的结果还表明,溶液相 F 4 TCNQ 掺杂会导致固态薄膜中完全电离和二聚化的 F 4 TCNQ 阴离子,而在沉积后掺杂 F 4 TCNQ 的薄膜中则不会观察到这种情况。我们的研究结果为将溶液相掺杂应用于可能需要高通量沉积技术的广泛高性能基于 SWCNT 的热电材料和设备提供了一个框架。
传感技术,例如辐射检测,(1)生物成像,(2)和(3)是发光材料的某些应用。尤其是,在辐射激发下散发光线的发光材料,称为闪烁体,具有许多应用,包括医学,工业和科学的应用。尽管在过去的几十年中已经研究了许多闪烁体,但(4-7)关于新型闪烁体的基本研究仍然比以往任何时候都取得更好的性能。已经有关于各种类型的闪烁体的报道,例如单晶,(8-21)纳米晶体,(22)晶体膜,(23)陶瓷,(24-27)眼镜,(28-37)塑料,(28-37)塑料,(38)和有机 - 无机混合材料,(39-42),甚至是最后几年。就发光中心而言,特定的掺杂剂(例如CE,欧盟和TL)主要用于商业闪烁体;但是,其他掺杂剂也是我们的利益。在这项研究中,我们研究了Y 3 Al 5 O 12(YAG)的光致发光(PL)和辐射发光(RL)特性,该特性用3D转换金属离子掺杂。我们选择Ti,V,Mn和Cu作为3D-Transiton金属,因为它们被称为或研究为用于激光照明和显示的发光材料的掺杂剂,例如Ti掺杂的Al 2 O 3,(43)V型voped Yag,(44)Mn-Mn-Doped Zns,(45),(45)(45)和cu-dopeded glasses and cu-doppoped glasses and cu-doppoped glasses and cu-doppopep glasses and cu-doppoppopep。(46,47),因为石榴石型单晶
通过烧结机械合金化的 Fe 和 Si 粉末与 Mn、Co、Al、P 作为 p 型和 n 型掺杂剂,制备了添加了 B 4 C 纳米粒子的 β-FeSi 2 。随后将固结样品在 1123 K 下退火 36 ks。退火后烧结物的 XRD 分析证实了从 α 和 ε 几乎完全转变为热电 β-FeSi 2 相。样品表面的 SEM 观察结果与衍射曲线相符。TEM 观察结果显示 B 4 C 纳米粒子均匀分布在材料中,没有可见的聚集体,并确定了晶粒尺寸参数 d 2 < 500 nm。所有掺杂剂都有助于降低热导率和塞贝克系数,其中 Co 对提高与参考 FeSi 2 相关的电导率的影响最大。结合添加 Co 作为掺杂剂和 B 4 C 纳米粒子作为声子散射体,Fe 0.97 Co 0.03 Si 2 化合物的无量纲性能系数 ZT 在 773 K 时达到 7.6 × 10 –2。将所检测的烧结物与之前制造的相同化学计量但不添加 B 4 C 纳米粒子的烧结物的热电性能进行比较,发现它们总体上具有负面影响。关键词:二硅化铁、纳米粒子、热电材料
图1所示的垂直NPN设备制造的标准过程始于P类型基板。基板在将制造NPN设备设备的区域中植入N型掺杂剂(例如砷)。该植入物被称为埋藏层,因为下一步是N型硅的外延生长。掩埋层的板电阻远低于外延层的电阻。AR分离扩散是用诸如硼的P Tyne掺杂剂进行的。这会产生由P型隔离所包围的N型材料的电隔离岛。是这些N型区域,它们是侧向NPN设备的收集器。直接在这些区域的下方将是先前讨论的埋藏层。掩埋层通过为电流流动创造低电阻路径来降低收集器电阻。这是产生所需的电气设备特性所需的。进入N型岛群体被扩散为P型硼基。当将N型掺杂剂(如磷)扩散到碱基中时,发射极会形成。垂直NPN结构现在很明显。