我们研究了一种在原子薄的半导体中诱导超导性的机制,激子介导电子之间的有效吸引力。我们的模型包括超出声子介导的超导性范式的相互作用效应,并连接到玻色和费米极性的良好限制。通过考虑TRIONS的强耦合物理,我们发现有效的电子相互作用会形成强频率和动量依赖性,并伴随着经历了新兴的BCS-BEC交叉的系统,从弱绑定的S-波库珀对Bipolarons的超浮雕。即使在强耦合时,双丙酸也相对较轻,从而导致临界温度占费米温度的10%。这使二维材料的异质结构有望在通过电子掺杂和Trion结合能设置的高临界温度下实现超导性。
“这项研究通过改善水电解在推进绿色能源解决方案方面起着至关重要的作用,这是一种从风能和太阳能等可再生能源产生绿色氢的关键技术,” Tooku University高级大学高级材料研究所(WPI-AIMR)的副教授Hao Li说。
解决过多的碳排放引起的严重环境问题,碳捕获,利用和储存技术(CCUS)已引起了广泛关注。1 - 3为了探索Co 2 Hydroge-nation对甲醇反应4,5的探索,目的是同时改善可再生能源的利用。目前,工业量表上的甲醇合成很大程度上取决于合成气的转化,该合成气体是CO和H 2的混合物,与少量CO 2促进了Cu/ZnO/ZnO/Al 2 O 3催化剂。尽管如此,基于Cu的催化剂对于反水 - 气体什叶派(RWG)反应显着活跃,导致甲醇选择性降低和催化剂失活,尤其是在相对较高的反应温度下。6 - 8
Cyclonic Ross Gyre(RG)占据了南大洋的西南太平洋地区(图1A)。水文数据(Gouretski,1999),卫星高度测定(Dotto等,2018)和建模(Rickard等,2010)的证据表明,RG在海面以下3,000 m以上,延伸了约20 sv,运输于约20 sv,占据了约20 sv的运输,占主导地位的大型热热结构。水平RG范围受到南部的大陆架断裂和北部和西部的太平洋 - 北极山脊(PAR)的限制(图1A)。RG的向南流动的东部肢体受地形的强烈约束(Patmore等,2019),其位置更可变(Dotto等,2018; Sokolov&Rintoul,2009)。东部RG肢体和邻近的南极圆极电流(ACC),向Amundsen Sea(AS)架子供应温暖的圆形深水(CDW)(Jenkins等,2016; Nakayama等,2018),在到达冰架腔时,它可以快速融化。这种海洋驱动熔化的增加会导致附近的Amundsen-Bellingshausen海洋中的冰盖变薄(Depoorter等,2013; Jenkins等,2016)。
在ER掺杂的磷酸盐玻璃中淬灭,用于紧凑的光激光器和放大器 / Pugliese,迭戈; Boetti,Nadia Giovanna; Lousteau,J。; Ceci Ginistrelli,Edoardo; Bertone,Elisa; Geobaldo,Francesco;米兰,丹尼尔。- 在:合金和化合物杂志。- ISSN 0925-8388。-657:(2016),pp。678-683。[10.1016/j.jallcom.2015.10.126]
Lingjun Shu,Jingxuan Yin,Zhemin Gon,C Gao,Yongxing Liu等。设计了阴离子和阳离子共掺杂的Na3SB(WM)(X)S-4(M = Cl,Br,I)硫化物电解质,具有改善的电导率和稳定的界面质量。道尔顿交易,2023,10.1039/d3dt01151h。hal-04115631
摘要 - 用氧气和碳植入的氮化甘露的氮化岩在室温下显示载体介导的自旋机制。使用Tris(环戊二烯基)Gadolinium前体通过金属有机化学蒸气沉积生长的GD掺杂的GAN显示出普通的霍尔效应,并且在室温下没有浪漫主义。在o或c植入GD掺杂的GAN中,观察到表明载体介导的自旋和铁磁性的异常大厅效应。即使在植入后也保持良好的晶体质量。o和c偏爱间质站点,并在GD掺杂的GAN中占据了深层的受体型状态。由GD掺杂的GAN诱导的gadolinium诱导的室温自旋和铁磁性被占据间隙部位的O和C激活。载体介导的自旋功能的机制显示了对控制和操纵自旋作为氮化壳中的量子状态的潜力。这使gagdn:o/c成为室温旋转和量子信息科学应用的潜在半导体材料基础。在本文中,研究了使用离子植入,使用X射线衍射的结构表征在GD掺杂GAN中掺杂,并研究了使用高级HALL效应的自旋相关测量,并进行了相应的讨论。
摘要。在本文中,我们提出了一项活动,以介绍公钥加密PHY的概念,并使服务前的STEM教师探索基本信息学以及Mathemati Cal概念和方法。我们遵循教义工程方法中的教学情况理论(在数学教育研究中广泛使用),以使用图形设计和分析有关不对称加密的教学情况。遵循教学工程的阶段,在对内容的初步分析,教学环境的限制和构成之后,我们对情况进行了构思和分析,并特别关注环境(学生可以与学生互动)以及对教学变量的选择。我们讨论了他们对参与者详细说明加密信息所需的解决问题策略的影响。我们实施了我们的情况并收集了定性数据。然后,我们分析了后验参与者使用的不同策略。A后验分析与先验分析的比较显示了活动的学习潜力。要详细阐述不同的解决问题的策略,参与者需要探索和理解数学,信息学和两个学科的前沿中的几种概念和方法,并在不同的符号簿之间移动。
由于其出色的药物样和药代动力学特性,小分子药物被广泛用于治疗各种疾病,使其成为药物发现的批评组成部分。近年来,随着深度学习(DL)技术的快速发展,与传统的机器学习方法相比,基于DL的小分子药物脱离方法在预测准确性,速度和复杂的分子关系建模方面取得了出色的性能。这些进步提高了药物筛查效率和优化,它们为各种药物发现任务提供了更精确,更有效的解决方案。依靠该领域的发展,本文旨在系统地总结和推广基于DL的小分子药物发现的最新关键任务和代表性技术。具体来说,我们提供了小分子药物发现及其相互关系的主要任务的概述。接下来,我们分析了六个核心任务,总结了相关方法,常用数据集和技术开发趋势。最后,我们讨论了关键挑战,例如可解释性和分布范围内化,并提供了我们对DL辅助小分子药物发现的未来探索方向的见解。
不可侵犯生长过程的缺陷。激光性能通常受到Ti3þ -Ti4Þ离子对8的光损失红外吸收带的限制,这些离子对8恰好发生在激光发射波长中。退火改善了成年晶体的质量。它允许将部分更改为ti3Þ,并改善所谓的功绩图(FOM),该图可以测量约500 nm的吸收系数与吸收系数相对于寄生虫Ti3Þ -Ti3Þ -Ti4Þ吸收带的吸收系数的比率。在本文中,大尺寸和高度Ti3Þ掺杂的Al 2 O 3单晶在RSA Le Rubis Company的Kyropoulos Technique(KT)成功生长,并执行了成年晶体的光学特征。