马尔可夫模型中的量子防护多源随机性提取器,Rotem Arnon-Friedman、Christopher Portmann 和 Volkher B Scholz,第 11 届量子计算、通信和密码理论会议,2016 年。已发布版本。
指纹识别(或复制检测)存储数据库中所有AI生成内容的哈希,例如。Neuralhash(Apple Inc.,2021年)。这些哈希是向量表示∈{0,1} k或r k通常是由自我保护的特征提取器生成的(Oquab等人。,2023; Devlin等。,2018年)。查询一块内容时,我们将其哈希与数据库中的哈希进行了比较,并确定它是否是重新发电的副本。在大规模上,存储哈希并通过它们进行搜索很麻烦,并且反向搜索必须近似以易于处理(Douze等人。,2024)。此外,功能提取器对内容修改并不完全鲁棒:例如,音频及其×1.25速度版本可能具有不同的哈希。这两个因素会导致错误,尤其是在对抗环境中(Douze等人,2021; Papakipos等。,2022)。另一个缺点是需要将哈希存储在数据库中,这使得很难共享,而开源场景不可能。
摘要 在基于脑电图 (EEG) 的分类任务中发现和利用共享的、不变的神经活动对于跨受试者或 EEG 记录会话的解码模型的通用性具有重要意义。虽然深度神经网络最近成为通用的 EEG 特征提取器,但这种迁移学习方面通常依赖于先前的假设,即深度网络自然表现为受试者(或会话)不变的 EEG 特征提取器。我们建议在模型训练期间以系统的方式进一步实现 EEG 深度学习框架的不变性。我们引入了一种对抗性推理方法来学习在判别设置内对受试者间变异不变的表示。我们使用公开的运动想象 EEG 数据集和基于卷积神经网络的 EEG 解码模型在提出的对抗性学习框架内进行实验研究。我们展示了跨学科模型转移场景中的结果,展示了学习网络的神经生理学解释,并讨论了对抗性推理为不断发展的 EEG 深度学习领域提供的潜在见解。
随着深度伪造技术的快速发展,深度伪造语音的检测变得越来越具有挑战性。在本文中,我们提出了一种用于深度伪造语音检测的混合架构,将用于特征提取的自监督学习框架与分类器头相结合,形成端到端模型。我们的方法结合了音频级和特征级增强技术。具体而言,我们介绍并分析了用于增强原始音频频谱图和在训练期间增强特征表示的各种掩蔽策略。我们在特征提取器的预训练阶段加入了压缩增强,以解决小型单语言数据集的局限性。我们在 ASVSpoof5(ASVSpoof 2024)挑战赛上对该模型进行了评估,在封闭条件下在 Track 1 中取得了最佳结果,等错误率为 4.37%。通过使用不同的预训练特征提取器,该模型实现了 3.39% 的增强 EER。我们的模型表现出了抵御未知深度伪造攻击的强大性能,并在不同的编解码器中表现出了强大的泛化能力。
痴呆症是一种常见的脑部疾病,对个人和社会都有负面影响。本文涉及使用 Interspeech 2020 的自发语音 (ADReSS) 挑战赛对阿尔茨海默氏痴呆症进行分类。我们使用 (1) VGGish(一种深度预训练的 Tensorflow 模型)作为音频特征提取器,并使用 Scikit-learn 分类器来检测语音中的痴呆症迹象。三个分类器(LinearSVM、Perceptron、1NN)的准确率为 59.1%,比在挑战赛中使用的声学特征上训练的最佳基线模型高出 3%。我们还提出了 (2) DemCNN,这是一种新的基于 PyTorch 原始波形的卷积神经网络模型,准确率为 63.6%,比表现最佳的基线线性判别分析模型准确率高出 7%。我们发现,使用预训练的 VGGish 特征提取器的音频迁移学习比使用自动提取的声学特征的基线方法表现更好。我们的 DepCNN 表现出良好的泛化能力。本文介绍的两种方法都为通过自发语音进行新的、创新的、更有效的基于计算机的痴呆症筛查提供了进展。
由于具有促进安全性和散装嵌入能力的潜力,生成图像隐志的最新进展引起了人们的关注。但是,通常用于特定任务的生成隐志方案,并且几乎不应用于具有实际约束的应用。为了解决这个问题,本文提出了一种通用的生成图像steganography方案,称为隐肌Stylegan(Stegastylegan),该方案符合同一框架内的安全性,容量和稳健性的实际目标。在Stegastylegan中,使用新颖的分布保护秘密数据模块(DP-SDM)用于通过保留模型输入的数据分布来实现可证明的固定构成图像隐肌。此外,发明了一种通用和有效的秘密数据提取器(SDE),以进行准确的秘密数据提取。通过选择是否在训练过程中合并图像攻击模拟器(IAS),一个人可以获取两个具有不同参数但相同结构(发电机和提取器)的模型,以进行无损和有损的通道隐秘通信,即Stegastylegan-ls and Stegastylegan和Stegastylegan。此外,通过与GAN倒置交配,也可以实现有条件的生成型软糖。实验结果表明,无论是对于无损或有损的通信陈列而言,提出的Stegastylegan都可以显着超过相应的最新计划。
抽象的各种故障会导致电动机故障,从而导致停机时间和资产损失。故障检测技术在行业中非常需要预测和防止此类故障。机器学习的最新进展已启用数据驱动的模型,这些模型可以从电动机中监视的信号中识别故障。但是,这些信号可能很复杂,并且表明故障的特征是微妙的。因此,需要提取与信号故障相关的信息特征的有效方法。在本文中,我们探讨了对比度学习在检测相位电流信号的轴承断层中的使用。我们开发了一个模型架构,该模型结构由两个部分,一个特征提取器和一个分类器组成,其中特征提取器使用监督的对比度学习进行了预训练。在Pader-Born University轴承故障数据集上进行了测试,我们的模型达到了87%的高故障分类精度,这表现优于常规机器学习模型。我们还进行了消融测试,以证明该模型中基于对比的学习培训的重要性。通过研究模型的分类结果和提取的特征,我们进一步探讨了对比度学习在提取区分不同类别的特征中的效果。我们预计对比度学习可以奠定更准确的故障检测模型的基础,并将其扩展到其他实际的故障检测任务。
EEG中的跨主题变异性降低了当前深度学习模型的表现,限制了脑机构界面(BCI)的发展。本文提出了ISAM-MTL,这是一种基于可识别峰值的多任务学习(MTL)EEG分类模型(IS)代表和关联内存(AM)网络。所提出的模型将每个受试者的脑电图分类视为一项独立任务,并利用跨主题数据训练来促进跨受试者的特征共享。ISAM-MTL由一个尖峰功能提取器组成,该提取器可在受试者和特定主题的双向关联内存网络中掌握共享特征,该功能受HEBBIAN学习训练,以实现高效且快速的主体内部EEG分类。iSAM-MTL将学习的尖峰神经代表与双向缔合记忆进行了交叉主体EEG分类。模型标记引导的变异推断对可识别的尖峰表示,增强了分类精度。在两个BCI竞争数据集上的实验结果表明,ISAM-MTL提高了跨主体EEG分类的平均准确性,同时降低受试者之间的性能差异。该模型进一步表现出少数射击学习和可识别的神经活动的特征,从而实现了BCI系统的快速且可解释的核心。