基于脑电图(EEG)的电动机象征分类是最受欢迎的大脑计算机Interface(BCI)研究领域之一,由于其可移植性和低成本。在本文中,我们比较了基于小波的能量熵的不同预测模型,并经验证明,基于时间窗口的运动图像分类中基于时间窗口的方法可提供比流行的滤纸方法更一致,更好的结果。为了检查所提出方法的鲁棒性和稳定性,我们最终还采用了多种类型的分类器,发现混合击打(带有多种学习者的包装集合学习)技术超出了其他经常使用的分类者。在我们的研究中,BCI竞争II数据集III已与四个实验设置一起使用:(a)整个信号(对于每个试验)为一个部分,(b)(b)整个信号(b)整个信号(对于每个试验)被分为非重叠片段,(c)每个试验的整个信号(c)每个试验(对于每个试验)分为重叠的段(以及(d)段(dis),以及(d),以及(d),以及(d),以及(d),以及(d),以及(d),以及(d),以及(d)。乐队。从实验获得的结果(c),即91。43%的分类准确性不仅超过了本文其他方法的表现,而且据我们所知,这是迄今为止该数据集的最高性能。