摘要:使用归一化的流和重新加权,Boltzmann发电机可以从玻尔兹曼分布中启用平衡采样,该分布由能量函数和热力学状态定义。在这项工作中,我们引入了热力学插值(TI),该插值允许以可控制的方式生成采样统计。我们引入了直接在环境配置空间中工作的Ti风味,在不同的热力学状态或通过潜在的,正态分布的参考状态绘制。我们的环境空间方法允许规范任意目标温度,从而确保训练集的温度范围内的普遍性,并证明了外推的潜力。我们验证了TI对表现标准化和非平凡温度依赖性的模型系统的有效性。最后,我们演示了如何通过各种自由能扰动方法组合基于Ti的采样来估计自由能差,并提供相应的近似动力学速率,通过发电机扩展动态模式分解(GEDMD)估计。■简介
摘要计算性能与功耗之间的平衡是计算系统中的关键限制,集成电路技术带有瓶颈。近似计算可以将准确性或误差方案的功率改善进行权衡。分裂具有很高的计算需求和延迟,是计算效率的瓶颈。我们提出了一个基于乘法性能的二次插值近似分隔线(QIAD),该分裂具有较高的统计性能。在TSMC 65NM过程中模拟和合成该设计,并根据图像颜色量化进行了测试,显示了使用诸如PSNR,MSE和SSIM等评估指标的最佳量化效果。关键词:近似计算,分隔线,硬件设计。分类:集成电路(逻辑)
此公式可以更好地估计 xn 附近点 x 处的 f 值,因为公式尽可能早地使用最接近该 x 的数据点,并且还利用了最多 n 阶后向(实际上是相除)差值。同样的推理表明,该公式可能不适合估计远离 xn 的点 x 处的 f 值,即靠近观测数据的中间或开始处。但是,正如下图和下一模块中介绍的数值实验所示,这种限制没有任何实际意义。例 1:设 f(x) = e 2x Cos 3x,其中 x Є [0, 1]。使用 5 次牛顿前向/后向差分插值多项式,在节点 x = 0、x = 0.2、x = 0.4、x = 0.6、x = 0.8 和 x = 1 上找到 f(0.1)、f(0.5) 和 f(0.9) 的近似值。给定 6 个节点和相应的函数值,计算表 2 中给出的前向/后向差分。然后根据牛顿前向/后向差分插值公式,计算 f(0.1)、f(0.5)、f(0.9) 的值并将其与实际值进行比较。
信息质量评估基本上可以从五个共同维度进行评估:完整性、正确性、一致性、合理性和时效性。[ 29 ] 提供了一个用于描述数据质量维度之一的不同术语表。此外,它们还提供了数据质量维度和数据质量评估方法之间的映射。[ 19 ] 引入了 Sieve,这是一个灵活表达质量评估方法和融合方法的框架。由于移动人群感知 (MCS) 应用会产生大量感知数据,这些数据由能源供应有限的设备收集和预处理,因此在传感器管理方面出现了挑战,以确保实现节能和质量驱动的数据采集过程。[ 18 ] 提出了 G-MCS 模型,并评估了其在不同应用要求和地理传感器分布场景下的节能效果。语义互操作性是平台合作的先决条件,已在文献中得到广泛讨论。symbIoTe[ 31 ] 更进一步,通过引入物联网平台联盟和漫游物联网设备的概念,提出了组织互操作性的新方面。这些平台功能可用于验证用户和数据模式。评估传感物联网数据质量指标的主要挑战之一是缺乏基本事实。当试图在没有任何参考的情况下评估单张图片的质量时,这个问题在图像处理领域是众所周知的。该任务通常被描述为盲图像质量评估 [ 17 ] 或无参考图像质量评估 (NR-IQA) [ 20 ]。为了获得客观的质量指标,NR-IQA 会分析边缘的锐度或噪声水平。虽然这些方法可用于确定数据质量,但它们不适合对
信息质量评估基本上可以从五个共同维度进行评估:完整性、正确性、一致性、合理性和时效性。[ 29 ] 提供了一个用于描述数据质量维度之一的不同术语表。此外,它们还提供了数据质量维度和数据质量评估方法之间的映射。[ 19 ] 引入了 Sieve,这是一个灵活表达质量评估方法和融合方法的框架。由于移动人群感知 (MCS) 应用会产生大量感知数据,这些数据由能源供应有限的设备收集和预处理,因此在传感器管理方面出现了挑战,以确保实现节能和质量驱动的数据采集过程。[ 18 ] 提出了 G-MCS 模型,并评估了其在不同应用要求和地理传感器分布场景下的节能效果。语义互操作性是平台合作的先决条件,已在文献中得到广泛讨论。symbIoTe[ 31 ] 更进一步,通过引入物联网平台联盟和漫游物联网设备的概念,提出了组织互操作性的新方面。这些平台功能可用于验证用户和数据模式。评估传感物联网数据质量指标的主要挑战之一是缺乏基本事实。当试图在没有任何参考的情况下评估单张图片的质量时,这个问题在图像处理领域是众所周知的。该任务通常被描述为盲图像质量评估 [ 17 ] 或无参考图像质量评估 (NR-IQA) [ 20 ]。为了获得客观的质量指标,NR-IQA 会分析边缘的锐度或噪声水平。虽然这些方法可用于确定数据质量,但它们不适合对
I. I Tratsuction下一代网络(包括5G及以后)将需要使用动态频谱共享和功率域多次访问来处理不断增加的移动数据流量[1]。为了使这一点成为可能,我们需要开发更准确的估计无线电环境的方法,包括信号强度和拟议服务区域中的频谱可用性。路径损失信息,指示由于不同访问点(AP)而提出的服务区域中信号质量的信息是室内无线电环境中网络部署计划的重要组成部分。因此,在部署AP之前获得预测的室内路径损耗图(IPM)或接收的信号强度(RSS)图是必不可少的,因为它可以准确估算建筑物内的信号强度和覆盖范围,并有助于APS的放置。此外,精确的IPM可以启用应用程序,例如精确的室内定位[2],认知无线网络[3]和移动机器人[4]。获得准确的IPM可以是耗时且劳动密集型的过程,因为它需要在拟议的服务区域中的许多参考点(RPS)进行测量以及测试AP的安装。为了解决此问题,已经提出了各种技术,例如基于参考点上进行的测量值预测IPM的插值方法,以及在不使用RPS的情况下预测IPM的生成方法。Racko等。[5]使用无线电图生成的线性和Delaunay插值技术。通过测量指定位置的RSS,他们能够通过使用两种不同的插值方法来计算完整的RSS。
量子计量学允许在最佳的海森堡极限下测量量子系统的性能。但是,当使用数字汉密尔顿模拟制备相关的量子状态时,应计算的错误错误将导致与此基本限制的偏差。在这项工作中,我们展示了如何通过使用标准多项式插值技术来减轻由于时间演化而引起的算法错误。我们的方法是推断到零小猪的步长大小,类似于用于减轻硬件错误的零噪声外推技术。我们对插值方法进行了严格的误差分析,用于估计特征值和随时间推动的期望值,并证明在误差中达到了heisenberg的限制,以达到多种类因素。我们的工作表明,仅使用Trotter和经典资源来实现许多相关算法任务,可以实现接近最先进模拟的精度。
动画线Inbetwewing是动画制作的关键步骤,旨在通过预测两个关键帧之间的中间线艺术来增强动画流动性。但是,现有方法在有效地解决稀疏像素和行动中的重大运动时面临挑战。在文献中,通常采用倒角距离(CD)来评估表现性能。尽管达到了有利的CD值,但现有方法通常会产生与线路断开连接的插入框架,尤其是对于涉及大型运动的场景 - iOS。为了解决这个问题,我们提出了一种简单而有效的插值方法,用于动画线,其中采用基于薄板样条的变换来更准确地估算两个关键帧之间的关键点对应关系,尤其是对于大型运动方案。在粗估计的基础上,使用简单的UNET模型在最终框架插值之前,采用了一个运动精炼模块来进一步增强运动细节。此外,为了更多地评估动画线的性能,我们完善了CD指标,并引入了一个名为“加权倒角距离”的新指标,该指标与视觉感知质量具有更高的一致性。此外,我们结合了Earth Mover的距离并进行用户研究以提供更全面的评估。我们的方法通过以增强的流动性提供高质量的介导结果来执行现有方法。
我们提出了Vidim,这是一个视频间隔的生成模型,该模型在启动和最终框架下创建了简短的视频。为了实现高保真度并在输入数据中产生了看不见的信息,Vidim使用级联的分化模型首先以低分辨率生成目标视频,然后在低分辨率生成的视频上生成高分辨率视频。我们将视频插补的先前最新方法归纳为先前的最新方法,并在大多数设置中演示了这种作品如何在基础运动是复杂,非线性或模棱两可的情况下失败,而Vidim可以轻松处理此类情况。我们还展示了如何在开始和最终框架上进行无分类器指导,并在原始高分辨率框架上调节超级分辨率模型,而没有其他参数可以解锁高保真性结果。vidim可以从共同降低所有要生成的框架,每个扩散模型都需要少于十亿个pa-rameters来产生引人注目的结果,并且仍然可以在较大的参数计数下享有可扩展性和提高质量。请在vidim- Interpolation.github.io上查看我们的项目页面。