用于高频应用的具有光敏性的低 Df 聚酰亚胺 Hitoshi Araki *、Yohei Kiuchi、Akira Shimada、Hisashi Ogasawara、Masaya Jukei 和 Masao Tomikawa 东丽工业公司电子与成像材料研究实验室,3-1-2 Sonoyama,大津,滋贺 520-0842,日本 *hitoshi.araki.u8@mail.toray 我们研究了聚酰亚胺链的分子运动和极性,开发出了新型低介电常数 (Dk) 和耗散因数 (Df) 聚酰亚胺。我们发现 10-100 GHz 时的 Df 对应于 -150 至 -50 ℃ 时的分子迁移率。为了降低高频时的介电损耗 (=Df),限制低温下的分子运动非常重要。此外,减少聚酰亚胺链中的极性和柔性单元对于获得低 Dk 和 Df 的聚酰亚胺也很重要。我们利用这些知识开发了用于 RDL 的低介电损耗聚酰亚胺。结果,我们获得了新型聚酰亚胺的损耗角正切为 0.002 和介电常数为 2.7。这些聚酰亚胺可以通过正性光刻胶显影的碱性湿法蚀刻和紫外激光烧蚀法进行图案化。我们还通过混合光活性剂开发了光可定义的低损耗角正切聚酰亚胺。与传统的感光聚酰亚胺相比,新型低 Df 聚酰亚胺的微带线插入损耗更低。这些低介电损耗聚酰亚胺适用于 FO-WLP 绝缘体、中介层和其他微电子射频应用。 关键词:聚酰亚胺,低 Dk 和 Df,高频,图案化,低插入损耗 1. 简介 近年来,使用更高频率的 5G 通信技术正在不断推进,以实现高速大容量通信 [1]。此外,用于汽车防撞系统的毫米波雷达将使用超过 60 GHz 的频率 [2]。扇出型晶圆级封装 (FO- WLP) 因其封装尺寸小、制造成本低而备受半导体封装关注。高频 FO-WLP 中的再分布层 (RDL) 需要具有低介电常数 (Dk) 和耗散因数 (Df) 的绝缘体材料 [3]。特别是,采用扇出技术的封装天线 (AiP) 是 5G 时代的关键技术之一。聚四氟乙烯和液晶聚合物被称为低介电常数、低介电损耗材料。然而,这些材料在粘附性和精细图案的图案化性方面存在困难。用于 FO-WLP 再分布层的光电 BCB 介电常数低
本文讨论了一种高度集成的多芯片模块 (MCM) 可布线(薄)微型引线框架 ® (rtMLF ® ) 封装,适用于多功能高性能应用。这种封装包括内部布线引线,用于在封装内连接芯片到芯片。这些布线引线让封装增强了小尺寸特性,作为参考,可以将其与具有两个单个四方扁平无引线 (QFN) 封装的结构进行比较,其中芯片通过电路板走线连接。使用传统的 QFN 工艺确认了 MCM rtMLF 封装的可行性,并且它通过了汽车电子委员会 Q006 (AEC-Q006) 可靠性测试。通过布线引线的芯片到芯片互连在电阻、电感和电容寄生以及插入损耗方面表现出比两个单个 QFN 封装的板载互连更好的电气性能。最后,通过热模拟测得的 MCM rtMLF 封装的热阻低于 MCM 双层芯片级封装 (CSP)。
摘要:可见波长超大规模集成 (VLSI) 光子电路有可能在量子信息和传感技术中发挥重要作用。可扩展、高速、低损耗的光子网格电路的实现取决于可靠且精心设计的可见光子元件。本文我们报告了一种基于压电驱动机械悬臂的低压光学移相器,该移相器是在 CMOS 兼容的 200 毫米晶圆可见光子平台上制造的。我们展示了差分操作中 6 V π -cm 的线性相位和幅度调制、-1.5 dB 至 -2 dB 的插入损耗以及 700 nm - 780 nm 范围内高达 40 dB 的对比度。通过调整选定的悬臂参数,我们演示了一个低位移和一个高位移装置,两者均表现出从直流到峰值机械共振的几乎平坦的频率响应,分别在 23 MHz 和 6.8 MHz,通过共振增强 Q~40,进一步将工作电压降低至 0.15 V π -cm。
摘要 — 设计并演示了在 100 微米薄玻璃基板上通过通孔互连的高精度高性能带通和低通滤波器的双面或 3-D 集成,用于超小型双工器组件。开发了一种实现大面积高精度制造的新型工艺,以大大提高电气性能的公差。高精度、高品质因数和高元件密度以及玻璃上的薄膜层用于在玻璃上实现创新的拓扑结构,以实现高带外抑制和低插入损耗。低损耗 100 毫米厚的玻璃芯和多层 15 毫米薄聚合物膜用于在基板上构建滤波器。演示的双工器尺寸为 2.3 3 2.8 3 .2 毫米。借助玻璃的尺寸稳定性和半加成图案化工艺控制,所制造的滤波器的性能与模拟结果具有极好的相关性。还分析了工艺敏感性分析对双工器性能的影响。最后,展示了一种独特而创新的工艺解决方案,以控制工艺偏差并实现良好的双工器公差。使用新工艺,性能偏差控制在约 3.5 倍。
摘要 — 本文报道了一种三通道、非连续、流形多路复用器,工作频率为 220 至 330 GHz,工作带宽为 40%。该结构采用一组脊状基片集成波导 (SIW) 进行设计和实现。与传统 SIW 设计相比,脊状 SIW 提高了阻带带宽,并将整体结构尺寸缩小了 35%。三工器采用英特尔开发的有机封装基板技术,具有四层厚铜金属层和连续沟槽通孔代替标准通孔围栏,可显著降低脊状 SIW 波导的欧姆损耗。在三工器结构的开发中采用了电磁电路建模和协同设计技术。使用带状毫米波晶圆探测测量制造的三工器,通带中的插入损耗为 3 ∼ 7 dB,每个通道滤波器的平均回波损耗优于 10 dB。测得的三个通道的阻带衰减均优于 27 dB。
摘要 — 本文报道了一种三通道、非连续、流形多路复用器,工作频率为 220 至 330 GHz,工作带宽为 40%。该结构采用一组脊状基片集成波导 (SIW) 进行设计和实现。与传统 SIW 设计相比,脊状 SIW 提高了阻带带宽,并将整体结构尺寸缩小了 35%。三工器采用英特尔开发的有机封装基板技术,具有四层厚铜金属层和连续沟槽通孔代替标准通孔围栏,可显著降低脊状 SIW 波导的欧姆损耗。在三工器结构的开发中采用了电磁电路建模和协同设计技术。使用带状毫米波晶圆探测测量制造的三工器,通带中的插入损耗为 3 ∼ 7 dB,每个通道滤波器的平均回波损耗优于 10 dB。测得的三个通道的阻带衰减均优于 27 dB。
摘要 — 我们提出了一种新型紧凑型宽带波导 T 结功率分配器,特别适用于毫米波和太赫兹频率。它将基于基板的元件整合到波导结构中,以提供输出端口的隔离和匹配。内部端口引入在基板上形成为 E 探针的 T 结的顶点。这有助于将反射能量从输出端口有效地耦合到与 E 探针集成在同一基板上并通过薄膜技术制造的新型薄膜电阻终端。设计、模拟和制造了适用于 150-220 GHz 频带的功率分配器,以实验验证理论和模拟性能。结果表明,模拟和测量结果具有极好的一致性,对于三端口设备,输入和输出端口的回波损耗显著为 20 dB,输出端口之间的隔离度优于 17 dB。此外,测量的插入损耗小于 0.3 dB,幅度和相位不平衡分别为 0.15 dB 和 0°。此外,分压器对内置吸收负载的电阻材料的尺寸和薄层电阻具有出色的耐受性,使该设备成为毫米波和太赫兹系统(特别是射电天文接收器)非常实用的组件。
摘要 — 为了突破电气链路的带宽和延迟限制,高性能计算集成的下一个突破最终将通过光子技术和片上光网络 (ONoC) 实现。这项工作介绍了 ONoC 的整体架构,并报告了在 200 mm Leti 平台上 SOI 晶圆上的 Si 光子中介层的详细集成和制造。已成功实现了在 1310 nm 波长下工作的有源光子电路、12 µm 直径 100 µm 高度的硅通孔 (TSV) 中间工艺、带有 µ 柱的四层金属后端线路 (BEOL) 和加热器上方带有热腔的背面重分布层。横截面的形态表征评估了工艺发展和集成结果。在有源光子末端和 TSV / BEOL 工艺之后,在肋和深肋结构上测量的光传播损耗以及在单偏振光栅耦合器 (SPGC) 结构上的插入损耗均未显示偏差。 TSV 中间电阻经评估低于 22 mΩ,成品率大于 95%。最后,讨论了功能性 ONoC 系统所需的所有单个工艺块,尤其是环形调制器,以及它们成功优化的协同集成。
摘要 — 本文提出了一种高效宽带毫米波 (mm-Wave) 集成功率放大器 (PA),该放大器采用了基于低损耗槽线的功率组合技术。所提出的基于槽线的功率合成器由接地共面波导 (GCPW) 到槽线的过渡和折叠槽组成,可同时实现功率合成和阻抗匹配。该技术提供了一种宽带并联-串联合成方法,可增强毫米波频率下 PA 的输出功率,同时保持紧凑的面积和高效率。作为概念验证,我们在 130 nm SiGe BiCMOS 后端 (BEOL) 工艺中实现了紧凑的四合一混合功率合成器,从而使芯片面积小至 126 µ m × 240 µ m,测量的插入损耗低至 0.5 dB。3 dB 带宽超过 80 GHz,覆盖整个 G 波段 (140-220 GHz)。基于此结构,采用 130 nm SiGe BiCMOS 技术制作了高效毫米波 PA。三级 PA 实现了 30.7 dB 的峰值功率增益、40 GHz 的 3 dB 小信号增益带宽(从 142 GHz 到 182 GHz)、测量的最大饱和输出功率为 18.1 dBm,峰值功率附加效率 (PAE) 在 161 GHz 下为 12.4%。极其紧凑的功率合成方法使核心面积小至 488 µ m × 214 µ m,单位芯片面积的输出功率为 662 mW/mm 2 。
摘要 — 随着光通信的覆盖范围不断缩小,光子学正从机架到机架数据通信链路转向需要不同架构的厘米级计算机内应用 (computercom)。集成光学微环谐振器 (MRR) 正成为满足更严格的面积和效率要求的有吸引力的选择:它们通过波分复用 (WDM) 和高带宽密度提供缩放。在本文中,我们介绍了在 45 nm CMOS 中单片集成的用于 computercom 的紧凑型电光发射 (TX) 和接收 (RX) 宏。它们与 MRR 调制器和光电探测器一起工作,并包括所有必要的电子器件和光学器件,以实现片上数据源和接收器之间的光学链路。通过感测驱动电子器件中的光学设备的偏置电流而不是使用外部工作点感测光学器件,实现了最紧凑的热稳定性实现。使用场效应晶体管作为加热元件(在单片集成平台中是可能的)可进一步减少热控制所需的面积和功率。TX 宏的工作数据速率高达 16 Gb/s,消光比 (ER) 为 5.5 dB,插入损耗 (IL) 为 2.4 dB。RX 宏在 12 Gb/s 时灵敏度为 71 µ A pp,BER ≤ 10 − 10。用宏构建的芯片内链路在 10 Gb/s 时实现 ≤ 2.35 pJ/b 的电气效率和 BER ≤ 10 − 10。两个宏都在 0.0073 mm 2 内实现,每个宏的带宽密度为 1.4 Tb/s/mm 2。