本文档中包含的产品和服务的规格和描述在印刷时是正确的。Integrated Control Technology Limited 保留更改规格或撤回产品的权利,恕不另行通知。未经 Integrated Control Technology Limited 明确书面许可,不得以任何形式或任何方式(电子或机械)复制、复印或传播本文档的任何部分用于任何目的。Protege® 和 Protege® 徽标由 Integrated Control Technology Limited 设计和制造,是 Integrated Control Technology Limited 的注册商标。所有其他品牌或产品名称均为其各自所有者的商标或注册商标。
解构木质素时的主要目标是实现有用的产品或中间体的高收益,同时使不良副产品的形成成立,事实证明这是具有挑战性的。11要实现木质素向低分子量化合物的高转化,因此必须打破C - C键。12,13,例如,还原性催化分数(RCF)在很大程度上切割了C-C键完整14,芳香族单体的产量限制为15-30%。可以通过在高温和高压下的催化来实现木质素中的C - C键,但成本相对高。这激发了对替代方法的探索。在先前的工作中,我们报告了一种在环境温度或接近木质素中断裂C - C键的替代方法。这种方法将硫化与芬顿化学的解构结合在一起。在芬顿反应中,Fe 2+与过氧化氢反应,产生Fe 3+和高效的羟基自由基。17 - 19个先前的工作表明,芬顿反应产生的羟基自由基有效地裂解C - C键在磺酸聚合物(如木质磺酸盐)中,20,21种磺化聚乙烯,22和聚苯乙烯硫酸盐。23 - 25通过将硫基团添加到固定铁中,将氧化量反应定位于底物,从而导致这些聚合物有效分解至低分子量产物。Fenton反应在环境温度和大气压下进行。与需要能源密集型过程和高压反应器的方法相比,这是一个优势。此外,由于芬顿反应发生在水中,少量生物相容性铁作为催化剂,因此在生物转化之前几乎不需要后期处理。可以通过调整反应条件和试剂量(铁和H 2 O 2)来控制芬顿反应中实现的解构程度。可以对低分子量产物产物进行广泛的解剖,但是在解构的程度与通过过度氧化对挥发性化合物(例如CO 2)损失的碳量之间存在贸易。过度氧化还通过更大的氧化剂H 2 O 2的消耗导致成本增加。在这里,我们探索了来自Poplar的木质素的解构,Poplar是一种相关的生物能源原料,与用离子液体过程产生的富含糖流相关的26 a a e er分离。27我们先前的工作后,我们首先将杨树木质素磺化。28接下来,我们使用Fenton反应将磺化的木质素解散,表明我们可以通过不同的试剂浓度来控制解结和重聚的程度。然后,我们探索了分解产物的生物学可用性,并证明了分解产物向喷射燃料前体Bisabolene的转化。这项工作的目标是在整个过程中展示原理证明,包括转换为产品。下面我们报告结果并讨论了几个想法,以提高过程中每个步骤的收率。
我们提出了Vidim,这是一个视频间隔的生成模型,该模型在启动和最终框架下创建了简短的视频。为了实现高保真度并在输入数据中产生了看不见的信息,Vidim使用级联的分化模型首先以低分辨率生成目标视频,然后在低分辨率生成的视频上生成高分辨率视频。我们将视频插补的先前最新方法归纳为先前的最新方法,并在大多数设置中演示了这种作品如何在基础运动是复杂,非线性或模棱两可的情况下失败,而Vidim可以轻松处理此类情况。我们还展示了如何在开始和最终框架上进行无分类器指导,并在原始高分辨率框架上调节超级分辨率模型,而没有其他参数可以解锁高保真性结果。vidim可以从共同降低所有要生成的框架,每个扩散模型都需要少于十亿个pa-rameters来产生引人注目的结果,并且仍然可以在较大的参数计数下享有可扩展性和提高质量。请在vidim- Interpolation.github.io上查看我们的项目页面。
摘要:计算思维被认为是当代教育中的关键能力,使个人准备在数字上普遍存在的世界中应对复杂的挑战。在这项具有预测试和测试后措施的准实验设计研究中,研究了高等教育学生中数学教学学领域发展计算思维的可能性。这是通过基于问题的学习(PBL)方法使用实验组中的问题解决的,或者以对照组中解决问题的分析进行分析。干预后,对照组在测试后措施中获得的得分有了统计学上的显着改善。因此,PBL和解决问题并没有导致学生的计算思维的改善,而对已解决的概率方法的分析确实如此。因此,结果表明了后一种方法对教学计算思维的潜在好处。
摘要:地表数字模型在林业中具有许多潜在应用。如今,光检测和测距 (LiDAR) 是收集形态数据的主要来源之一。通过激光扫描获得的点云用于通过插值对地表进行建模,该过程受到各种误差的影响。使用 LiDAR 数据收集地表数据用于林业应用是一个具有挑战性的场景,因为森林植被的存在会阻碍激光脉冲到达地面的能力。因此,地面观测的密度将降低且不均匀(因为它受到冠层密度变化的影响)。此外,森林地区通常位于山区,在这种情况下,地表的插值更具挑战性。本文对九种算法的插值精度进行了比较分析,这些算法用于在茂密森林植被覆盖的山区地形中从机载激光扫描 (ALS) 数据生成数字地形模型。对于大多数算法,我们发现总体精度方面的性能相似,RMSE 值在 0.11 到 0.28 m 之间(当模型分辨率设置为 0.5 m 时)。其中五种算法(自然邻域、Delauney 三角剖分、多层 B 样条、薄板样条和 TIN 薄板样条)对超过 90% 的验证点的垂直误差小于 0.20 m。同时,对于大多数算法,主要垂直误差(超过 1 m)与不到 0.05% 的验证点相关。数字地形模型 (DTM) 分辨率、地面坡度和点云密度会影响地面模型的质量,而对于冠层密度,我们发现与插值 DTM 的质量之间的联系不太明显。
摘要:地表数字模型在林业中具有许多潜在应用。如今,光探测和测距 (LiDAR) 是收集形态数据的主要来源之一。通过激光扫描获得的点云用于通过插值对地表进行建模,这一过程受到各种误差的影响。使用 LiDAR 数据收集地表数据用于林业应用是一个具有挑战性的场景,因为森林植被的存在会阻碍激光脉冲到达地面的能力。因此,地面观测的密度将降低且不均匀(因为它受到冠层密度变化的影响)。此外,森林地区通常位于山区,在这种情况下,地表的插值更具挑战性。在本文中,我们对九种算法的插值精度进行了比较分析,这些算法用于在茂密的森林植被覆盖的山区地形中从机载激光扫描 (ALS) 数据生成数字地形模型。对于大多数算法,我们发现在总体精度方面性能相似,RMSE 值在 0.11 到 0.28 米之间(当模型分辨率设置为 0.5 米时)。其中五种算法(自然邻域、Delauney 三角剖分、多层 B 样条、薄板样条和基于 TIN 的薄板样条)对于超过 90% 的验证点具有小于 0.20 米的垂直误差。同时,对于大多数算法,主要垂直误差(超过 1 米)与不到 0.05% 的验证点相关。数字地形模型 (DTM) 分辨率、地面坡度和点云密度影响地面模型的质量,而对于冠层密度,我们发现与插值 DTM 的质量之间的联系不太显著。
为10-40 kJ/mol [75]。根据表3,三种类型的酒精的相互作用是物理吸附(ED = 27-45 kJ/mol)。物理吸附相互作用是可逆的。酒精
摘要:氧析出反应 (OER) 对基于水电解的未来能源系统至关重要。氧化铱是极具前景的催化剂,因为它们在酸性和氧化条件下具有耐腐蚀性。在催化剂/电极制备过程中,使用碱金属碱制备的高活性铱(氧)氢氧化物在高温(>350°C)下会转变为低活性金红石 IrO 2。根据碱金属的残留量,我们现在表明这种转变可以产生金红石 IrO 2 或纳米晶态锂插层 IrO x 。虽然转变为金红石会导致活性较差,但锂插层 IrO x 具有与高活性非晶态材料相当的活性和更好的稳定性,尽管在 500°C 下处理。这种高活性纳米晶态的铱酸锂可以更耐受生产 PEM 膜的工业程序,并提供一种稳定非晶态铱(氧)氢氧化物中大量氧化还原活性位点的方法。 ■ 简介
事件的成本通常不只是赎金 — 它还包括受影响系统的恢复和停机造成的损失。日立合作伙伴 Veeam 1 的一份报告发现,在 93% 的勒索软件事件中,威胁行为者积极针对备份存储库。75% 的受害者丢失了部分备份,39% 的备份存储库完全丢失。
和安全优势。第一个光学透视 HMD 由 Sutherland 在 20 世纪 60 年代提出 6 。从那时起,光学透视技术在军事 7-11 、工业 12,13 和消费电子应用 14-16 中不断得到探索。已经开发出各种方法来将图像从微型投影仪引导到观察者,将现实世界的视图与虚拟图像相结合 16,17 。早期的 HMD 光学组合器基于传统的轴向分束器,如谷歌眼镜 18-20 所示。然而,由于视场 (FOV) 和框架尺寸与光学元件的尺寸成正比,因此在性能和舒适度之间取得平衡会导致此类智能眼镜的 FOV 更小。为了实现更大的 FOV,使用离轴非球面镜的 HMD