摘要:插电式混合动力汽车(PHEV)配备多个动力源,为满足驾驶员的动力需求提供了额外的自由度,因此通过能量管理策略(EMS)合理分配各动力源的动力需求,使各动力源工作在效率区,对提高燃油经济性至关重要。本文提出一种基于软演员-评论家(SAC)算法和自动熵调节的无模型EMS,以平衡能量效率的优化和驾驶循环的适应性。将最大熵框架引入基于深度强化学习的能量管理,以提高探索内燃机(ICE)和电动机(EM)效率区间的性能。具体而言,自动熵调节框架提高了对驾驶循环的适应性。此外,通过从实车采集的数据进行了仿真验证。结果表明,引入自动熵调节可以有效提高车辆等效燃油经济性。与传统EMS相比,该EMS可节省4.37%的能源,并且能够适应不同的驾驶循环,并能将电池的荷电状态保持在参考值。
摘要:能量管理策略对于发挥四轮驱动插电式混合动力汽车(4WD PHEV)的节能效果至关重要。针对4WD PHEV中复杂的多能量系统,提出一种新的双自适应等效消耗最小化策略(DA-ECMS)。该策略通过引入未来驾驶工况类别来调整等效因子,提高驾驶工况的适应性和经济性,优化多能量系统的管理。首先,采用自组织神经网络(SOM)和灰狼优化器(GWO)对驾驶工况类别进行分类,离线优化多维等效因子;其次,采用SOM进行驾驶工况类别识别,并匹配多维等效因子;最后,DA-ECMS完成前轴多能源与电驱动系统的多能量优化管理,释放4WD PHEV的节能潜力。仿真结果表明,与基于规则的策略相比,DA-ECMS经济性提高了13.31%。
∗ 基金项目 : 科技创新 2030“ 脑科学与类脑研究 ” 重大项目 (2022ZD0208601), 国家自然科学基金 (62076250,62204204), 陕西
本研究调查了插电式燃料电池电动汽车 (PFCEV) 的储能系统 (ESS) 的最佳尺寸,同时考虑了技术、经济和环境挑战。主要目标是最大限度地降低生命周期成本 (LCC) 和运营成本,同时减少二氧化碳排放并保持电力系统的耐用性。PFCEV 的 ESS 包含三个核心组件:电池、质子交换膜燃料电池 (FC) 系统和超级电容器 (SC)。性能评估涉及对车辆运行参数的严格约束,并按照城市测功机驾驶时间表 (UDDS) 进行模拟。本研究的一个显著贡献是实施了双循环优化技术,使用二次规划 (QP) 和遗传算法 (GA) 来确定尊重指定约束的可行解空间。总之,研究结果为 PFCEV ESS 的最佳尺寸提供了宝贵的见解和建议。对不同 PFCEV、燃料电池汽车 (FCV) 和电池电动汽车 (BEV) 进行的比较分析表明,PFCEV 具有明显的优势。最后,对各种氢气类型的敏感性分析表明,需要降低生产绿色氢气的成本,以提高其经济可行性和运营效率。
发表在预印本服务器bioRxiv 上 的论文尚未经过专家同行评审。预 计下个月,该公司将在美国基因和细 胞治疗学会年会上提交这篇论文。 与此同时,OpenCRISPR-1 或其变体 在多种生物体(包括植物、小鼠和人 类)中是否都能发挥作用还有待证 明。此外,技术的伦理和安全问题也 需要考虑。但令人兴奋的是,这些突 破性成果为生成式AI 开辟了一条新 途径,将对医学和健康领域产生广泛 影响,有望从根本上改变人们的基因 蓝图。
不需要技术的计算机科学 (CS) 教育资源在计算机教育中变得有价值,原因多种多样,包括成本低、易于实施、结合物理/体现交互以及通常具有趣味性 (Nishida 等人,2009 年)。受这些“CS Unplugged”材料的启发 (Bell、Rosamond 和 Casey,2012 年),过去一两年内开发了一些现有的不需要技术的 AI 教育在线资源。Ali 等人开发了一门针对 AI 伦理的非插电中学课程 (Ali、Payne、Williams、Park 和 Breazeal,2019 年),Lindner 等人。已经开发了一个六课时的非插电课程,用于教授决策树和强化学习等概念(Lindner、Seegerer 和 Romeike,2019 年)。最近,一些其他未正式发布的非插电 AI 资源已作为课程计划在线提供(Microsoft,n.d.;Group,n.d.;Krueger,n.d.;Seegerer 和 Lindner,n.d.)。
进行用户的操作,例如按钮的按钮或鼠标的单击。当您触摸平板电脑上的屏幕滚动时,这是一个事件。按下控制器上的按钮播放视频游戏时,该按钮也是一个事件!在本课程中,您将使用纸质控制器为您的家人编排舞蹈。
摘要 —本文研究了插电式混合动力汽车 (PHEV) 的不协调、协调和智能充电对微电网 (MG) 优化运行的影响,并结合了动态线路额定值 (DLR) 安全约束。当配电线路达到最大容量时,DLR 约束(尤其是在孤岛模式下)会影响 MG 馈线的载流量。为了克服任何线路中断或应急情况,智能 PHEV 可用于帮助提高电网安全性。但是,使用 PHEV 会导致更高的功率损耗和馈线过载问题。为了解决这些问题,本文采用了一种重构技术。一种启发式算法(称为基于集体决策的优化算法)用于克服问题的非凸性和非线性。采用无迹变换技术来模拟由太阳辐射、负载需求和天气温度引起的 DLR 不确定性,以及由不同的充电策略、正在充电的 PHEV 数量、充电开始时间和充电持续时间引起的 PHEV 不确定性。此外,设计了一种深度学习门控循环单元技术来预测可再生能源输出,以减轻可再生能源组件中的不确定性。部署了经过修改的 IEEE 33 总线测试网络来评估所提模型的效率和性能。
收稿日期 : 2020-01-03 基金项目 :国家自然科学基金( 61763037 );内蒙古自然科学基金( 2019LH06007 );内蒙古自治区科技计划( 2019 , 2020GG0283 ) 通信作者 :齐咏生( 1975 —),男,博士、教授,主要从事风电机组状态监测与故障诊断方面的研究。 qys@imut.edu.cn
Tianyu 等 [24] 报道了一种基于金属液滴的毫米级热开 关 , 如图 7(a) 所示 , 热开关填充热导率相对较高的液