物联网(IoT)的兴起(IoT)驱动了诸如Internet工程工作组(IETF)之类的组织,以开发满足相关设备和网络要求的协议。一些挑战是它们的低处理能力,稀缺带宽,电池寿命和降低的数据速率。为了解决这些问题,互联网社区已经开发了针对受限环境的标准化协议。这些工作的结果包括受约束的应用程序协议(COAP)和受约束休息环境(Oscore)的对象安全性。COAP是一种专门的Web传输协议,可提供HTTP的其余服务,但开销和处理减少。Oscore是一种可应用的安全协议,可用于保护COAP通信,包括跨托管代理的端到端加密和完整性,重播保护和对请求的响应的约束。Oscore本身并未定义关键建立协议。在使用Oscore之前,交流方必须建立安全关联,包括通过一些带外机制的共享加密密钥。为了解决此问题,IETF创建了轻巧身份验证的钥匙交换(Lake)工作组,该工作组开发并标识了短暂的Diffie-Hellman,而不是Cose(EDHOC)Pro-Tocol。EDHOC旨在启用身份验证的
图2使用形状记忆合金和流体致动的软机器人抓手。(a)minir-ii。经许可复制,[25]版权所有2015,SPIE。(b)使用形状内存合金的弹性手指。经许可,[30]版权所有©2016,Mary Ann Liebert,Inc。(C)章鱼手臂启发的锥形软执行器。经许可,[31]版权所有©2020,Mary Ann Liebert,Inc。(d)经许可嵌入的软抓手嵌入了气动网络,[32]版权所有©2011 Wiley -VCH Verlag Gmbh&Co. Kgaa,Weinheim,Weinheim。(e)生物启发的机器人手。经许可复制[33]版权所有©2016 Sage Publications。
幸运的是,存在旨在解决量子威胁和审核问题的倡议。一个示例是TLS加密客户端Hello(ECH)用户隐私的扩展[Rescorla等。2022]和开放量器安全(OQS)项目[Stebila and Mosca 2016],以保护用户免受未来的量子攻击。但是,大多数用户对其TLS连接的安全性一无所知。进一步,这些方法可能会对网络性能产生负面影响。影响主要是由这些最新甲基化的大量数据驱动的。即使这些方法尚未在TLS中进行标准化,也可能在不久的将来使用它们。正在实施,并进行了量子安全实验。
另一方面,量子力学是非本地的,这意味着量子系统的组件部分即使在太空中和光速接触速度不超出空间,即使它们在太空中良好分开也可能会继续相互影响。在1935年,阿尔伯特·爱因斯坦(Albert Einstein)和他的同事鲍里斯·波多尔斯基(Boris Podolsky)和内森·罗森(Nathan Rosen)(EPR)首先指出了标准量子理论的这一特征,并于1935年在一份关键论文[1]中[1]指出,他们认为发现的非局限性是一种毁灭性的瑕疵,证明了标准量子形式不正确,或者表明是错误的。爱因斯坦称非局部性为“远处的怪异动作”。Schrödinger遵循发现量子非局部性的发现,详细介绍了多部分量子系统的组件即使在良好的分离中,它们也必须彼此依赖[2]。