Jonas Weissenrieder,材料物理学教授(KTH),评论,“量子材料构成了明天的量子创新的基石。我们在KTH上设想了量子应用材料空间中的巨大机会,其中包括新型光子探测器,磁场传感器和应变传感器。su,KTH和Nordita与WACQT和Novo Nordisk量子计算中心合作开发了量子支柱的材料。”
摘要 - 胰腺导管腺癌(PDAC),占胰腺肿瘤的90%的占90%的特征,其预后不良,5年生存率仅为12%。大多数患者被诊断出患有转移性或局部晚期疾病,只有15%有资格进行治疗切除术。PDAC表现出对化学疗法,靶向疗法和免疫疗法的抗性,这主要是由于其高度异质性肿瘤微环境(TME)。在这项研究中,我们对公开可用的SCRNA,空间转录组学和批量RNA测序数据集进行了整合分析,以研究TME组成和肿瘤结构对PDAC进展,治疗反应,治疗反应和临床结果的影响。我们确定了具有不同细胞组成,功能特征和免疫调节性细胞 - 细胞相互作用的TME亚型。在空间上不同的细胞壁细分市场和基因模块揭示了原发性肿瘤和转移性病变的异质性。发现与患者生存相关的独特集群,为TME生物学及其临床意义提供了新的见解。这些发现强调了整合多摩管方法以揭示PDAC TME复杂性的重要性,并强调了其为治疗策略提供信息并改善患者结果的潜力。
了解肠道微生物组的功能多样性对于解码其在健康和疾病中的作用至关重要。使用深入学习框架,我们确定了三种定义成年肠道微生物组的功能原型,每个原型都以特定的代谢潜力为特征:带有分支链氨基酸和细胞壁合成(原型1)的糖代谢,脂肪酸酸和TCA循环循环代谢(Artype型2)和Armino Acid Acid Acid and nIristy(Armogen nitrisp)(Armogen Mentiast)(Armogen Mentiast)(Armogen Mentiast)。原型接近度与稳定性有关,原型2代表最弹性的状态,这可能是由于其代谢灵活性所致。功能多样性在与疾病相关的微生物特征中成为混杂因素。在炎症性肠病中,我们观察到原型特异性的转移,包括在原型1-主导样本中增加碳水化合物代谢和3种样品原型中的炎症途径,这表明了微生物组靶向的干预措施的不同机会。该框架解决了微生物组研究中的关键挑战,包括个人间
纳瓦拉(Navarra),纳瓦拉(Navarra),西班牙。。Sanitialias de Navarra(西班牙Idiwdna。4 Centro 4 Centro 4。马德里,西班牙。。6纳瓦拉的医院,西班牙帕姆普洛纳。 西班牙纳瓦拉。 9 克莱尼卡纳瓦拉大学。 西班牙西班牙。 。6纳瓦拉的医院,西班牙帕姆普洛纳。西班牙纳瓦拉。9克莱尼卡纳瓦拉大学。西班牙西班牙。。
具有CRISPR-CAS9的基因组工程中的长期障碍一直无法衡量Cas9编辑结果及其在单细胞分辨率下的功能效应。在这里,我们提出了Superb-Seq,这是一种利用T7原位转录和单细胞RNA测序的新技术,以共同测量靶向靶标Cas9编辑及其对基因表达的影响。我们在10,000 k562细胞上进行了高级seq,靶向了四个用七个引导RNA的染色质重塑基因。Superb-Seq在所有七个目标站点和其他36个非目标位点上确定了11,891个编辑事件。尽管选择了七个指南的高特异性,但其中有六个导致靶向脱靶编辑,频率从0.03%到18.6%的细胞范围不等。在USP9X的第一个内含子中,明显的脱靶编辑破坏了该基因的表达和超过150个下游基因。总而言之,由于罕见和常见的编辑事件的结合,CAS9非目标是普遍存在的,主要发生在靶向基因的内含子内,并且可以对基因表达产生广泛的影响。Superb-Seq使用现成的套件,标准设备,并且不需要病毒,这将使全基因组CRISPR屏幕能够在不同的细胞类型中以及与临床相关的指南的功能表征。
在临床和临床前研究中,对MF的定量评估仍然是一个重大挑战,受到技术局限性和疾病固有的可变性的阻碍(Bengel等,2023; Karur等,2024; Barton等,2022)。心脏纤维化分析使心脏的小尺寸和缺乏提供足够分辨率的方法变得复杂(Galati等,2016)。组织学染色技术,例如Masson的三色染色,30
1 1表遗传学和细胞命运中心,CNRS /PARISITéParisCité,巴黎,法国2 Arthur和Sonia Labatt脑肿瘤研究中心,病假儿童医院,多伦多,多伦多,加拿大,加拿大玛格丽特癌症中心,玛格丽特癌症中心,大学健康网络,大学街101号,多伦多,多伦多,M5G1L7,M5G1L7 INSERM,CHU LILLE,U1192 -PROTéomiqueréponseinfymatoirespectrométrieDeMasse- Prism- Prism- F -59000法国Lille,法国6生物科学系,纽约大学,纽约,纽约,10027,10027 York, NY 10032, USA 9 CNRS UMR9019 Genome Integrity and Cancers, Université Paris-Saclay, Gustave Roussy Institute, Villejuif, France 10 Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, USA 11 Protein Analysis Unit, BioMedical Center, Faculty of Medicine, Ludwig-Maximilians-University, Martinsried, Germany 12 Department of美国波士顿的小儿肿瘤学,达纳 - 法伯波士顿儿童癌和血液疾病中心1表遗传学和细胞命运中心,CNRS /PARISITéParisCité,巴黎,法国2 Arthur和Sonia Labatt脑肿瘤研究中心,病假儿童医院,多伦多,多伦多,加拿大,加拿大玛格丽特癌症中心,玛格丽特癌症中心,大学健康网络,大学街101号,多伦多,多伦多,M5G1L7,M5G1L7 INSERM,CHU LILLE,U1192 -PROTéomiqueréponseinfymatoirespectrométrieDeMasse- Prism- Prism- F -59000法国Lille,法国6生物科学系,纽约大学,纽约,纽约,10027,10027 York, NY 10032, USA 9 CNRS UMR9019 Genome Integrity and Cancers, Université Paris-Saclay, Gustave Roussy Institute, Villejuif, France 10 Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, USA 11 Protein Analysis Unit, BioMedical Center, Faculty of Medicine, Ludwig-Maximilians-University, Martinsried, Germany 12 Department of美国波士顿的小儿肿瘤学,达纳 - 法伯波士顿儿童癌和血液疾病中心
菲洛巴氏菌(Filobasidium)属,是菲洛巴·西迪亚斯(Filoba Sidiales)的家族丝虫科的成员,是一组具有许多代表性物种的基本菌。迄今为止,已经在菲洛巴氏菌中描述并接受了14种。尽管最近发表了一些来自中国的新发现,但丝状岛的物种多样性仍未完全理解。样品,并检查了该属的物种多样性。三个新物种,即F. pseudomali sp。nov。 ,F。Castaneaesp。nov。和F. Qingyuanense sp。nov。基于内部转录间隔物(ITS)的系统发育分析以及大亚基(LSU)rRNA基因的D1/D2结构域以及其单独的序列与表型特征相连。提供了完整的描述,插图,与类似物种的比较以及系统发育分析。这项研究的发现实质上丰富了中国菲洛巴氏菌的生物多样性。
。CC-BY 4.0国际许可证。根据作者/资助人提供了预印本(未经同行评审的认证)提供的,他已授予Biorxiv的许可证,以在2025年2月25日发布的此版本中在版权所有者中显示预印本。 https://doi.org/10.1101/2024.11.28.625817 doi:Biorxiv Preprint
1计算生物学计划,彼得·马卡卢姆(Peter MacCallum)癌症中心,澳大利亚维克帕克维尔市7 2呼吸道疾病,默多克儿童研究所,澳大利亚帕克维尔,帕克维尔,澳大利亚帕克维尔8 3 3 3墨尔本大学,帕克维尔大学,帕克维尔大学,维克,维克,维克,维克,澳大利亚9 4呼吸和睡眠医院澳大利亚VIC帕克维尔12 6 6 6墨尔本大学医学生物学系,澳大利亚帕克维尔大学,澳大利亚帕克维尔13 7 Garvan-Weizmann蜂窝基因组学中心,加尔万医学研究所,新南威尔士州悉尼14号,澳大利亚悉尼14 15 8 8 8 UNW Cellular Genomics Futures Institute,New South Wales,New Southney,New Sydney,Newne of Melbcoltion of Mer Berimol,16澳大利亚爵士。帕克维尔,维克,18澳大利亚19 10 10数学与统计学院,墨尔本大学,帕克维尔,维克,澳大利亚20 21 *同等22#通讯作者23