摘要 近年来,面向全民的计算机科学教育已成为研究人员和从业人员关注的重要领域。与此同时,由于人工智能技术在人类日常生活中的日益普及,K-12 的人工智能 (AI) 教育越来越受到计算机科学教育者的关注。与一般的计算机科学能力相比,人工智能素养更需要基于证据的研究才能有效地融入我们的学校。用于计算机科学教育的常见学习环境使我们能够超越传统的教育研究方法,提供一个平台,可以从学生与计算机科学教育相关活动的互动中收集详细数据。因此,传统的教育研究方法加上从模式识别和学生建模方法中获得的见解,使我们能够有效地改进教学并为学生提供自适应支架。在这项工作中,我们提出了我们的第一个 AI 课程模块,旨在通过一系列逐步搭建的活动来教授基本的 AI 搜索算法——广度优先搜索 (BFS)。数据是从一名高中生对这项活动的初步试点中收集的,形式包括出声思考协议、屏幕截图、提交的基于块的编程工件和面试问题。我们的结果表明,我们的活动成功地提高了学生对 BFS 算法的了解,更重要的是,提高了学生如何利用这种特定的 AI 算法来解决现实世界的问题。根据这项试点研究的结果,我们建议在学习环境中设计一个综合的 AI 课程,该课程收集学生进度的详细数据,以指导教学设计并为学生提供自适应支架。
摘要 — 在最近一项基于听觉诱发电位 (AEP) 的脑机接口 (BCI) 研究中,结果表明,使用编码器-解码器框架可以将人类神经活动转化为语音 (T-CAS)。然而,当前基于编码器-解码器的方法通常采用两步法实现 T-CAS,其中信息通过共享的降维向量在编码器和解码器之间传递,这可能会导致信息丢失。解决此问题的一种潜在方法是使用双生成对抗网络 (DualGAN) 设计一种端到端方法,而无需对传递的信息进行降维,但它无法实现一对一的信号到信号转换(见图 1 (a) 和 (b))。本文提出一种端到端的人类神经活动直接转化为语音的模型,通过设计一种检测参与者注意力的装置,为注意力较好的参与者创建新的脑电图(EEG)数据集,并引入双对双生成对抗网络(Dual-DualGAN)(见图1(c)和(d))解决人类神经活动到语音的端到端翻译(ET-CAS)问题,通过对EEG信号和语音信号进行分组标记,插入过渡域实现跨域映射。在过渡域中,过渡信号由相应的EEG和语音信号按一定比例级联,为没有对应特征的EEG和语音信号搭建桥梁,实现一对一的跨域EEG到语音的翻译。所提出的方法可以将字长和句子长的神经活动序列转化为语音。实验评估表明,所提出的方法在听觉刺激的单词和句子方面明显优于最先进的方法。
外交部和奥里萨邦政府为刚刚结束的两年一度的印度侨民精英盛会“取得巨大成功”而感到自豪。为期三天的 Pravas Bharatiya Divas 大会在奥里萨邦首府布巴内斯瓦尔的 Janata Maidan 一个专门搭建的帐篷镇举行,不仅有来自 24 个国家的 27 位杰出印度侨民获得 Pravasi Bharatiya Samman 奖,还见证了 NDA 政府为在 2047 年(印度独立一百周年)实现“Viksit”(发达)印度而做出的共同努力。总体而言,代表们对为顺利举行大会所做的安排表示赞赏。奥里萨邦政府竭尽全力吸引外国直接投资进入各个领域,特别是在采矿业和旅游业。“重点理所当然地更多地放在了将印度塑造为一个新兴经济强国上,但与此同时,大会的另一方——海外侨民,却对自己在双边大会上的空间越来越小感到疑惑,”来自美国、澳大利亚和英国的一些代表评论道。他们认为,西方或发达国家代表参与度下降的原因是大会的授权发生了变化。相反,这一次,包括毛里求斯、阿曼、卡塔尔、阿联酋、马来西亚和一些非洲国家在内的一些亚洲国家占了所有代表的三分之二以上。重点更多地放在展示该国在目前的 NDA 政权期间在包括技术在内的各个领域取得的进步。它还为奥里萨邦政府提供了一个平台,向世界展示其在各个领域,尤其是旅游业提供的“投资机会”。2002 年,当时由阿塔尔·比哈里·瓦杰帕伊 (Atal Bihari Vajpayee) 领导的印度人民党 (BJP) 领导的全国民主联盟 (NDA) 政府认可了 LM Singhvi 的建议
全计划信函 23-030 致:所有 MEDI-CAL 管理式医疗计划 主题:与 MEDI-CAL 司法相关的重返社会计划相关州指导 目的:本全计划信函 (APL) 旨在宣布发布“规划和实施 CalAIM 司法相关的重返社会计划的政策和操作指南”1,适用于县福利部门、州监狱、县惩教机构、县青少年惩教机构和/或其指定实体。政策和操作指南(以下简称“指南”)记录了实施 Medi-Cal 司法相关的重返社会计划的政策和操作要求。背景:2023 年 1 月 26 日,加利福尼亚州成为美国第一个获得联邦批准的州,向州监狱、县监狱和青少年惩教设施 (YCF) 中符合 Medi-Cal 资格的青少年和成年人提供一套有针对性的医疗补助服务,最长可达获释前 90 天。2 通过医疗保险和医疗补助服务中心 (CMS) 批准的联邦医疗补助 1115 示范豁免,卫生保健服务部 (DHCS) 正在与州机构、县、服务提供商和社区组织 (CBO) 合作,建立一个协调的社区重返流程,帮助出狱人员在获释并重返社区之前获得他们所需的身体和行为健康服务。此次示威活动的“涉及司法系统的 Medi-Cal 重返社会计划”的目标是为涉及司法系统的 Medi-Cal 成员搭建通往社区护理的桥梁,为他们提供释放前最多 90 天的服务,以稳定他们的健康状况并制定社区护理计划(统称为“释放前服务”)。
新加坡,2024 年 7 月 24 日 新加坡南洋理工大学在迪特尔·施瓦茨基金会的资助下设立了新的量子网络安全研究项目 与慕尼黑工业大学合作设立的项目 新加坡南洋理工大学 (NTU Singapore) 正在通过德国非营利慈善基金会迪特尔·施瓦茨基金会的资助进一步研究确保量子网络安全。量子主权与复原力 (QUASAR) 计划旨在面对量子技术的重大进步和新的破坏性网络威胁,开发和加强网络安全技术。NTU 将与慕尼黑工业大学 (TUM) 合作开展该计划,并通过签署旗舰伙伴关系加强与 TUM 的现有合作。南洋理工大学副校长(工业)蓝钦勇教授和迪特尔·施瓦茨基金会科学董事总经理 Reinhold Geilsdörfer 教授今天在南洋理工大学校园举行的签字仪式上正式签署了捐赠协议。南洋理工大学董事会主席吴瑞真女士、南洋理工大学校长何德华教授和迪特尔·施瓦茨基金会股东大会主席彼得·弗兰肯伯格教授共同见证了这一仪式。何教授和慕尼黑工业大学校长托马斯·霍夫曼教授还签署了另一份协议,确立了南洋理工大学和慕尼黑工业大学之间的旗舰伙伴关系。何教授说:“南洋理工大学感谢迪特尔·施瓦茨基金会的慷慨支持,使量子主权和复原力计划得以创建。该计划将通过开展研究来维护全球数字经济的安全和网络安全,从而造福社会。” “这份礼物证明了 NTU 和我们的长期合作伙伴慕尼黑工业大学的卓越研究,我们正在通过旗舰伙伴关系扩大与慕尼黑工业大学的合作。我们期待着搭建通往量子安全未来的桥梁——我们的数据保持安全,我们的系统值得信赖,我们的数字
杜佩奇县建筑和分区部门 — 所需检查:1. 侵蚀控制在进行任何挖掘或移动土壤之前,安装沉积物和侵蚀控制措施所需的任何必要扰动除外。已批准的平整计划中指示的所有侵蚀控制措施都应到位并保持到最终平整批准。请留出至少 48 小时以完成该检查。2. 基础在浇筑混凝土之前以及基础挖掘完成并安装模板之后。3. 点状图在浇筑地基后,必须提交一份点状测量图,显示地基在地块上的确切位置和地基高程的顶部,并在安排回填检查之前由建筑官员批准。在安排检查之前,请留出至少四十八 (48) 小时以进行调查批准。 (新住宅和商业建筑的要求或其他特别要求。) 4. 回填 在回填之前以及安放好地基排水管和 12 英寸砾石之后,墙壁必须做好防潮处理并安装好窗井。回填检查未通过之前不得在基础上搭建框架。 5. 氡 在应用任何绝缘材料、防潮层或墙面饰面之前,以及氡管道系统完成后。 6. 板下管道 在安装板下管道之后,以及在用砾石、填料等隐藏之前。 7. 板下电气 在安装板下电气之后,以及在用砾石、填料等隐藏之前。 8. 混凝土预浇筑 在浇筑任何混凝土板之前,以及安装绝缘材料、防潮层、氡通风管道(需要时)和/或金属丝网之后。在为包括车道、露台、服务走道等在内的平面工程浇筑混凝土之前。9. 框架在应用任何绝缘材料、防潮层或墙面饰面之前,以及在粗框架防火完成后。10. 房屋包裹检查在应用任何外墙板、砖块或石材之前,以及在房屋包裹安装完成后,
学术背景和研究兴趣 Olusakin, Jimmy 我的科学研究重点是了解产前接触药物如何影响大脑发育轨迹和行为。在攻读博士学位期间,我与巴黎索邦大学的研究单位 Institut du Fer à Moulin 的 Patricia Gaspar 博士一起学习了药理学和神经解剖学病毒操作,以探究接触早期生活压力和药物使用的青春期小鼠的大脑压力应对和奖励相关回路。为了进一步了解接触发育期药物使用导致的大脑奖励相关区域的分子机制和神经适应,在博士后培训期间,我加入了巴尔的摩马里兰大学的 Mary Kay Lobo 博士的实验室。当时,她的实验室最近表明,围产期接触合成阿片类药物芬太尼会增加青春期小鼠出现焦虑样和缺乏动机行为的风险。我领导了对这些小鼠大脑转录景观的检查,通过研究青春期围产期芬太尼暴露导致奖赏相关大脑区域基因底物。我以性别为单位进行了多变量转录组分析,以表明奖赏区域(如伏隔核和腹侧被盖区)具有相反的差异表达基因。此外,我还观察到与细胞外基质重塑、突触信号传导和线粒体呼吸有关的基因簇的性别表达。此外,我正在与儿科的 Courtney Townsel 博士合作,帮助生成和解释新生儿阿片类药物戒断综合征婴儿母亲胎盘中出现的基因本体论特征。我很高兴能领导与 Townsel 博士的未来合作,将我们的围产期芬太尼小鼠模型胎盘中的转录组特征与临床样本进行比较。同时,我正在领导一个项目,研究母体压力和大麻的复合效应如何影响大脑发育。这是基于越来越多的孕妇摄入大麻以减少不同形式的慢性压力的报告。随着美国部分州和马里兰州最近将大麻用于娱乐目的合法化,育龄妇女使用大麻的情况预计将进一步增加,这进一步引发了人们对接触大麻的后代可能出现持久行为缺陷的担忧。在实验室中,我们已经开始探究接触产前 THC 和慢性母体压力的小鼠的行为缺陷。我的初步结果显示,产前 THC 和压力对焦虑样行为(尤其是青春期男性)存在一些性别特异性的相互作用。我目前正在使用基因多路复用方法探索导致观察到的行为缺陷的奖励脑区内的基因底物。该实验将生成可使用基因编辑方法操纵的转录靶标,希望恢复正常的大脑功能。总体而言,这些组合方法的目标是确定可以药理学靶向的细胞和分子机制,随后将其转化为临床试验,以可能减少或预防暴露于产前大麻、母体压力或两者结合的后代的持久行为缺陷。我的长期目标是探究与发育性物质使用暴露后奖励相关脑区内遗传和表观遗传修饰的神经适应有关的问题。我希望成为一名独立研究员,并在顶级研究机构建立一个具有竞争力的多学科实验室,在那里我还将继续指导年轻同事并参与旨在对抗物质使用障碍的外展计划。我相信旨在增强急救人员和戒毒康复能力的科学外展计划、受影响严重社区的干预疗法和减少伤害的做法在减轻成瘾负担方面发挥了重要作用。此外,我希望通过识别基因生物标记和药剂,在缓解成瘾循环方面取得基础研究进展。我相信马修·奥斯本奖学金将为我在成瘾领域所需的基础和临床合作架起桥梁。这项奖学金还将使我有机会与马里兰大学医学院内领先的成瘾研究小组分享我的科学研究成果,并将我的知识拓展到临床和社区,成为一名全面的成瘾科学家。干预疗法和减害实践在受影响严重的社区中已经大大减轻了成瘾负担。此外,我希望通过识别基因生物标记和药剂来减轻成瘾循环的基础研究能够取得进展。我相信马修·奥斯本奖学金将为我在成瘾领域所需的基础和临床合作搭建桥梁。这项奖学金还将使我有机会与马里兰大学医学院内领先的成瘾研究小组分享我的科学研究成果,并将我的知识拓展到临床和社区之外,成为一名全面的成瘾科学家。干预疗法和减害实践在受影响严重的社区中已经大大减轻了成瘾负担。此外,我希望通过识别基因生物标记和药剂来减轻成瘾循环的基础研究能够取得进展。我相信马修·奥斯本奖学金将为我在成瘾领域所需的基础和临床合作搭建桥梁。这项奖学金还将使我有机会与马里兰大学医学院内领先的成瘾研究小组分享我的科学研究成果,并将我的知识拓展到临床和社区之外,成为一名全面的成瘾科学家。
在航空航天业中展翅高飞 也许您曾经用乐高积木连续数小时搭建宇宙飞船和飞机,或是痴迷于《星球大战》的一切。也许您曾为一个科学项目搭建了模型火箭,从此便迷上了它。也许您观看了航天飞机的发射,参观了卡纳维拉尔角,或者在第一次乘坐飞机时看到了驾驶舱内部,从而对航空航天产生了浓厚的兴趣。还是您以前从未考虑过航空航天,而正在寻找一个充满活力的行业来开启您的职业生涯或继续深造?无论您对航空航天的兴趣是长期的还是刚刚开始,航空航天业都非常适合您,因为它提供了充足的机会。航空航天业正面临着需要 STEM 技能(科学、技术、工程和数学)的工作岗位工人短缺的问题。在美国,只有 1.5% 的 25 至 34 岁人口拥有理科学位。这些技术工人是航空航天工业基础的骨干,对于持续创新、经济增长、全球竞争力甚至国家安全都至关重要。换句话说,如果你拥有合适的技能,你就可以成为航空航天业不可或缺的一部分,但 39% 的航空航天公司预测,技术工人的缺乏和存在的技能差距将对业务增长产生“极端”影响。每个空缺职位都可能意味着 14,000 美元的损失。与此同时,大量技术工人正在退休,很少有人愿意接替他们的职位。如果你具备技能或愿意努力获得这些技能,那么航空航天业的工作已经为你准备好了。航空航天业的三大支柱是商用和通用航空、军用飞机和空间系统。设计、制造和维修商用飞机、公务机、直升机、私人飞机、无人机以及子系统和部件的公司构成了商用和通用航空。超过 23,000 家供应商公司(大部分为中小型企业)构成了该行业的供应链。该行业的军事部分包括作战和非作战飞机及系统的制造。航天部件是该行业的第三大支柱,包括商业和政府用途的航天运载火箭、卫星、航天器和地面系统。它是国家安全的关键因素,也是现代经济的驱动力。由于该行业的职业发展空间巨大,那些希望进入航空航天业的人可以从事各种职业,从成为飞行员到空中交通管制员,再到制造飞机,甚至制造飞机的零部件。例如,Acutec Precision Aerospace 将这一概念归结为他们反复使用的一句话:“我们制造其他产品所需的材料。”
arrowia lipolytica 属于子囊菌门、酿酒菌亚门和双足菌科 (1)。除了工业用途 (2) 之外,Y. lipolytica 还广泛存在于食品、环境和动物中 (1)。由于其能够在 32°C 以上不稳定地生长,因此通常认为该菌种可安全用于工业用途 (1)。Yarrowia lipolytica 是一种机会性病原体,可引起侵袭性念珠菌病 (3)。在体外,该菌种被认为对氟康唑敏感 (4)。第一个 Y. lipolytica 基因组 (CLIB122) 于 2004 年发布 (5)。我们报告了对氟康唑有抗性的 Y. lipolytica 临床分离株的基因组草图,该分离株是从溃疡性结肠炎手术后的血培养中采集的。有趣的是,尽管之前曾接触过唑类药物,但使用梯度浓度试纸法(Etest;bioMérieux),该菌株的氟康唑 MIC 为 0.256 mg/mL。患者成功地用卡泊芬净治疗。该菌株在 35°C 的显色琼脂平板(CAN2;bioMérieux)上生长,并使用 Vitek 基质辅助激光解吸电离 - 飞行时间质谱 (MALDI-TOF MS) 仪器(bioMérieux)进行鉴定。在溶菌酶细胞壁消化后,使用 QIAmp DNA minikit(Qiagen)提取基因组 DNA。使用 Illumina DNA 制备标记试剂盒(Illumina)构建文库。简而言之,使用珠状转座子技术和集成 DNA 技术 (IDT) 的 Illumina DNA/RNA 独特双重 (UD) 索引集将 30 ng 总 DNA 片段化并进行索引。使用 Qubit 高灵敏度试剂盒 (Thermo Fisher Scienti ) 对文库进行扩增、纯化和定量。最后,将 9 pM 汇集和变性文库放入 2 250-bp v2 试剂盒 (Illumina) 中,并使用 MiSeq 仪器 (Illumina) 进行测序。使用 CLC Genomics Workbench v22.0 (Qiagen) 中的 Trim Reads v2.5 和 De Novo Assembly v1.5 工具对原始读取进行修剪、组装成重叠群并进行搭建。使用覆盖率与长度图丢弃覆盖率为 , 10 且长度为 , 500 bp 的重叠群 (6)。使用 QUAST v5.0.2 对最终的 scaffold 集进行质量分析 (7)。总基因组大小为 20,255,408 bp,分布在 521 个 scaffold 上(覆盖率为 100 ),N 50 值为 105 kbp(最长 scaffold,397 kbp),GC 含量为 49.03%。AUGUSTUS v3.4.0 (8) 使用白色念珠菌训练数据集预测了 6,151 个蛋白质编码基因,使用 tRNAscan-SE 2.0 检测到了 484 个 tRNA 基因 (9)。使用 BUSCO v5.3.2 和 saccharomycetes_odb10 谱系数据集 (10) 估计基因组完整性为 95.3%。平均核苷酸同一性 (ANI) 计算
钢筋混凝土结构——“通过形状体现力量” HM Pawar O'shell 先生:一般来说,钢筋混凝土结构应始终保持 150 毫米的钢筋间距标准。在本例中,学生们仅凭对力线的理解,就将结构顶部的钢筋间距增加到了 750 毫米。O'shell 没有任何高科技生产系统,而是依靠人类机器人(学生和非熟练工人的手)的想法。从设计概念化到结构施工,再到项目最终完成,整个建造过程在 20 个工作日内完成。印度蒂鲁吉拉帕利 CARE 建筑学院的学生创造了“o'shell”原型,以探索形式与力的关系。该实验项目旨在促进重要的动手体验,同时以直观和有趣的方式建立对基于张力的曲面结构的理解。在导师 balaji rajasekaran (dmac 组) 的指导下,这项工作成为学生程序设计模块的一部分。o'shell 项目是一项现场练习,让学生有机会根据现场参数创建建筑响应。这包括决定结构的方向、基础网格和初始框架。这项实验还让学生有机会看到整个工作,从最初的设计开发到结构的实现。施工过程的第一步是挖掘地面以形成底座梁。此后,学生们一起搭建钢结构。通过利用钢的抗拉性能,该项目采用了非标准/非线性过程,以现场主动弯曲作为设计驱动力,无需任何模板或模板来固定混凝土或引导几何形状。基础框架是使用现场参数得出的,然后根据团队对应力线方法的理解对钢材进行编织和弯曲,以指导概念结构设计。 B] 钢筋混凝土礁石:邦政府已批准该项目。为了提高鱼类产量并为渔民提供生计支持,将在 Thiruvananthapuram 和 Poovar 渔村附近安装 400 块人工鱼礁。这项耗资 3.75 亿卢比的鱼类产量提高计划是耗资 47.5 亿卢比的 Vizhinjam 修复项目的一部分,旨在恢复即将建成的国际深水海港所影响的渔民并向他们提供补偿。整体结构:两百个整体三角形钢筋混凝土 (RCC) 礁石模块将很快被放入 Kollamcode、Paruthiyoor、Valiyathura、Kochuthura、Puthiyathura、Pallom 和 Adimalathura 渔村附近沿海的海域。另外 200 个钢筋水泥礁模块将安装在该地区更南部的 Poovar 渔村海岸附近。总共将建造一个由 400 个礁模块组成的人工集群。人工礁被认为是附着生物的良好栖息地,附着生物是一群微小的浮游生物,是杂食性和草食性鱼类的主要食物来源。预计黄貂鱼、电鳐、龙虾、鲹鱼、鲹鱼和水蚤将到达这些人工礁石以捕食小鱼。除了提高沿海鱼类的整体供应量外,人工礁石群还将振兴水生环境,充当产卵和育苗场,减少侦察捕鱼时间,并为因特大洪水而流离失所的双体船渔民提供生计