。cc-by-nd 4.0国际许可证是根据作者/资助者提供的,他已授予Medrxiv的许可证,以永久显示预印本。(未通过同行评审认证)
摘要:我们考虑了相对论潮汐对时钟比较实验频率偏移的影响。在潮汐、轴对称和旋转的地球引力场中,推导出频率偏移和时间传递的相对论公式。借助描述固体地球潮汐响应的洛夫数,我们建立了地面时钟比较实验的潮汐效应与重力仪的局部重力潮汐之间的数学联系,这反过来又为我们提供了一种利用局部重力潮汐数据消除潮汐对时钟比较影响的方法。此外,我们开发了一种受扰开普勒轨道的方法来确定太空任务时钟比较的相对论效应,与传统的未受扰开普勒轨道方法相比,该方法可以进行更精确的计算。利用这种摄动方法,可以给出由于潮汐力、地球扁率等影响而引起的轨道变化对相对论效应的摄动。另外,作为结果的应用,我们模拟了地面时钟比较中频移的潮汐效应,并对天琴任务和 GPS 给出了一些估计。
现有的构图特征的现有效应措施对于许多现代应用,例如在微生物组研究中是不足的,因为它们表现出可以通过传统的参数方法对高差异性和稀疏性等性状进行的特质。此外,以公正的方式评估组合物的摘要统计数据(例如种族多样性)如何影响响应变量并不简单。我们提出了一个基于假设数据扰动的框架,该框架定义了对组成本身的可解释的统计功能,我们称其称为平均扰动效应。这些效果自然说明了偏见经常使用边际依赖分析的混淆。我们通过得出依赖摄动依赖性的重复化并应用半参数估计技术来显示如何有效估计平均扰动效应。我们对模拟和半合成数据的经验分析了提出的估计量,并证明了与纽约学校和微生物组数据的数据相比的优势。
由于刚体动力学、气动力和控制映射项中的非线性以及欠驱动,固定翼飞机模型的控制设计可能具有挑战性。未建模动力学或参数不确定性的存在会使问题更具挑战性。本文研究固定翼飞机的纵向动力学控制,该飞机悬挂或悬挂的有效载荷就像一个附加的钟摆。此类系统出现在涉及无人机 (UAV) 收集和运送有效载荷的应用中,其中长距离飞行要求可能需要使用固定翼飞机。推导了耦合飞机有效载荷系统的动力学,并利用基于 Lyapunov 的控制设计和奇异摄动理论的工具开发了非线性控制器。控制器能够跟踪和转换预先规划或动态生成的飞行轨迹。分析与仿真结果表明,该控制器能够实现精确的飞行路径跟踪,并对载荷参数进行数值研究,以确定系统在保持飞行稳定性的前提下,实现载荷运输的能力。
在诊所使用皮质活性模式的时空复杂性的定量估计作为衡量意识水平的量度,但涉及的皮质机制尚未完全了解。我们使用了适合于雪貂(任何性别)大脑皮层在体外(SPCI)中适应多站点记录的摄动复杂性指数(PCI)的版本,以投资GABA能抑制皮质复杂性的作用。我们研究了两个动态状态:慢波活性(同步状态)和非同步活性,分别表达低因果和高因果复杂性。在这两种方案期间对GABA能抑制的进行性阻断揭示了其对新兴皮质活性和SPCI的影响。逐渐的GABA A受体阻滞导致更高的同步,能够将网络从对同步到同步状态,并逐渐降低复杂性(SPCI)。阻断GABA B受体也导致SPCI降低,特别是在同步的慢波状态下。我们的发现表明,抑制的生理水平有助于产生动力学丰富性和时空复杂性。但是,如果抑制作用减少或增强,皮质复杂性会降低。使用计算模型,我们在这种关系中探索了较大的参数空间,并演示了兴奋/抑制平衡与皮质网络表达的复杂性之间的联系。
航天器轨迹设计将飞行器的物理能力与动态环境知识相协调,以到达太空中的首选目的地。识别可用的传输几何形状和硬件规格对于产生可行的解决方案是必不可少的。一个挑战是了解控制飞行器在太空中任何特定区域移动的底层动态结构。扩展多体系统的基本知识有助于构建理想的路线。本研究的目标是表征地球-月球-太阳系统中存在的低能结构的一般行为。其动机与美国宇航局阿尔忒弥斯计划的发展有关,该计划的公共和私营部门现在都对月球任务表现出越来越浓厚的兴趣。1 对于到月球区域的传输时间不受限制的任务,低能量传输提供了推进剂效率高的路径。在地球-月球-太阳系统中,一种低能量传输被称为弹道月球传输 (BLT)。弹道月球转移利用太阳的摄动,在月球轨道之外飞行数月。美国宇航局的地月自主定位系统技术操作和导航实验 (CAPSTONE) 任务于 2022 年 6 月发射,将使用 BLT 在今年晚些时候到达月球附近。2 近期的多个任务也将利用 BLT 到达月球轨道,包括韩国探路者月球轨道器任务 (KPLO)3 和 JAXA 的平衡月地点 6U 航天器 (EQU-ULEUS)。4