传统上,很难向图形通信专业的学生解释光源对彩色图像的影响,因为必须先冲洗胶片才能获得反馈。然而,数码相机的出现使人们不仅可以用照片捕捉正确的颜色,还可以故意捕捉不正确的颜色。此外,几乎可以立即向学生提供反馈。由于原始照片的质量和准确性会影响所有后续过程,本文将描述一个演示活动,教学生为什么以及如何捕捉与原始场景非常接近的图像、校准显示器的重要性以及如何使用图像编辑软件来纠正错误捕捉的图像。
代码:BHDRD1 SAQA ID:94832 X射线照相是射线照相的创建;通过将摄影膜或其他图像受体暴露于X射线来制作的照片。由于X射线穿透了固体物体,但被它们略微减弱,因此暴露导致的图片揭示了对象的内部结构。X射线照相仪应能够应用适用于临床表现的科学知识和技术,以在所选选修课中生产最佳图像质量;能够考虑设备,人力资源,质量保证和医疗保健需求,以计划,开发和应用全面的质量管理;能够管理射线照相服务;能够运用研究技能和原则,并能够将先进的道德原则应用于日常实践。
生成的对抗网络(GAN)是人工智能的重要突破之一,对摄影世界产生了重大影响。该技术允许创建随机数据的逼真的照片图像,然后在照片制作中创造新的机会。这项研究探讨了许多研究结果有关BRO在摄影中的应用的结果,并研究了它们在使用时产生的美学和道德含义。所使用的方法是一种定性方法,它是文献研究的一种定性方法,收集了各种科学文章,书籍和学术出版物的数据,这些数据的重点是BRO及其在制作照片图像中的应用。结果表明,BRO允许新的照片图像创建以前无法做到,并提供了创造性修改的能力。但是,该技术的应用也提出了与其产生的照片的真实性和信誉相关的挑战,尤其是在深层和操纵的背景下。此外,人们担心使用BRO对公众对其真实性的看法的影响。这项研究得出结论,Gan为摄影美学的发展做出了重大贡献,但是需要更多的法规和关注道德方面的方面来维持数字时代摄影艺术的完整性。
斯特拉特福德工厂摄影收藏-SX 系列 - 草稿清单 简介 这些照片是由斯特拉特福德工厂机车、车厢和货车部门绘图室的工作人员在 1900 年至 1953 年之间的不同时间拍摄的。工厂于 1963 年底关闭时,底片(主要是玻璃板上的)被送往唐卡斯特。20 世纪 60 年代末,它们被转移到英国交通博物馆克拉珀姆,成为国家收藏的一部分,随着国家铁路博物馆的建立,它们最终被转移到约克。主题 大部分图像的主题是斯特拉特福德工厂和坦普尔米尔斯货车工厂及其周边地区,但有些是 GER 系统的其他地方。大多数与机车部门负责的事务有关。主题范围包括机车、车厢、货车、公路车辆、车间机械和工厂以及战争损坏。登记册和负片编号 NRM 有手写摄影登记册,但有几个局限性;描述非常简洁,许多都没有日期。登记册列出了负片 SX101 至 SX2638;SX 指的是 Stratford Works,这是 LNER 采用的惯例。前 1211 张负片没有按日期顺序列出,检查记录的数字组日期表明登记册是在 1930 年准备的。SX 101 至 221 1928、27 和 29 SX 222 至 238 1920 至 1924 SX 241 至 306 所有 GER 时期?SX 398 至 404 1929 SX 405 至 416 1902 至 1920 SX 524 至 688 1930 SX 689 至 814 大部分为德国时期 SX 815 至 1210 大部分为德国时期,但也有 1926 年的部分 SX 1211 及以后 1930 年 10 月以后按时间顺序排列。英国国家档案馆 (Kew) 有六本相册,均来自斯特拉特福工厂,编号为 RAIL 227/431 至 436,这进一步证实了这一推测。这些相册包含许多斯特拉特福收藏的照片,但没有一张在右下角有 SX 编号,这表明这些编号是后来添加到底片上的。
摘要 “GPS 摄影测量”这一术语适用于使用机载全球定位系统 (GPS) 接收器收集航空摄影数据。使用机载 GPS 有两个重要原因:实现精确的航线导航,以及减少空中三角测量调整所需的地面控制量。研究表明,在空中三角测量中使用 GPS 衍生的相机曝光中心可以大大减少甚至消除对地面控制的需求。在研究环境中进行了多次成功的测试,这些测试非常小心地控制系统误差,并且捆绑调整程序已经过特别修改以纳入 GPS 衍生的曝光站。摄影测量制图界已经认识到使用 GPS 摄影测量可以节省时间、精力和费用。然而,摄影任务的成功取决于对操作要求及其对飞行计划和数据处理的影响的良好理解。在进行 GPS 摄影测量项目之前,必须解决许多实际问题。这些问题包括在飞机上选择和安装 GPS 天线、将 GPS 接收器连接到航空相机以及确定从 GPS 天线相位中心到相机节点的偏移矢量。还需要了解全球定位系统、GPS 数据处理和摄影测量区域网平差的基础知识。
Barat 16128 * 联系方式:fillahalfatih@apps.ipb.ac.id 摘要。数字技术的发展极大地改变了微型、小型和中型企业所采用的营销策略。在竞争日益激烈的数字营销生态系统中,高质量的视觉品牌是吸引消费者注意力和提高品牌知名度的关键要素。然而,企业在制作有效的视觉内容时经常会遇到与预算、技术和专业知识相关的限制。为了应对这些挑战,Rabbithall Studio 提供了一种解决方案,即提供价格合理、高质量的内容,特别是对于在食品和饮料行业运营的企业。本研究旨在为 Rabbithall Studio 设计一个商业模式画布 (BMC),以有效支持中小微企业的数字营销战略。描述性定性方法用于分析 BMC 中的关键要素,例如客户细分、价值主张、分销渠道和成本结构。研究结果表明,Rabbithall Studio 拥有战略性商业模式,专注于提供美观且适合 Instagram 的产品摄影服务以及文案支持。这项研究为中小微企业采用视觉和基于内容的营销来增强其在数字市场的竞争力提供了战略指南。关键词:产品、摄影、数字营销、UMKM Abstrak。数字技术技术包括 Usaha Mikro、Kecil 和 Menengah (UMKM)。 Dalam ekosistem pemasaran 数字营销竞争、视觉品牌营销是一种重要元素。但是,UMKM 还提供了一些技术、技术和视觉效果。 Rabbithall Studio 拥有会员解决方案,提供摄影产品、餐饮服务和餐饮服务。 Penelitian 的商业模式画布 (BMC) Rabbithall Studio 提供了数字 UMKM Secara efektif 策略。性能描述 描述 BMC 的基本要素、要素、性能、建议、分配和结构。 Hasil penelitian menunjukkan bahwa Rabbithall Studio memiliki 模型是杨策略、设计摄影产品杨美学和 instagramable、serta dukungan layanan 文案。研究人员在 UMKM 策略中学习视觉效果和数字技术。 Kata kunci : fotografi, produk, pemasaran, digital, UMKM
摘要。传统的基于LIDAR的对象检测研究的基础侧重于封闭场景,该场景在复杂的现实世界应用中差不多。直接将现有的2D开放式视频计学模型转移到具有一些已知的LiDAR类别以进行开放式摄氏度的能力,但往往会遇到过度拟合的问题:获得的模型将检测到已知的对象,甚至呈现出新的类别。在本文中,我们提出了Opensight,这是一种基于激光雷达的开放式摄影检测的更高级的2D-3D建模框架。Opensight利用2D-3D几何先验来进行通用观察的初始识别和定位,然后对检测到的对象进行了更具体的语义解释。该过程首先从LIDAR的随附的相机图像中生成2D框。用LiDar点的这些2D盒子将其抬起回到激光雷达空间中,以估算相应的3D盒子。为了获得更好的通用对象感知,我们的框架都集成了时间和空间感知的约束。时间意识将连续时间戳跨预测的3D框关联,从而重新校准了错过或不准确的框。空间意识随机将一些“精确”估计的3D框以不同的距离估计,从而增加了通用对象的可见性。要解释检测到的对象的特定语义,我们开发了一个跨模式对齐和融合模块,以将3D特征与2D图像嵌入,然后融合为语义解码的对齐的3D-2D特征。我们的实验表明,我们的方法在广泛使用的3D检测基准上建立了最先进的开放式摄影性能,并有效地识别了对新类别感兴趣的对象。
1, 2 III. B. Com CA 3 助理教授,B. Com Ca 系,Sri Krishna Adithya 艺术与科学学院 摘要 - 索尼公司是当今世界最知名的品牌之一。日本索尼公司于 1994 年 11 月在印度成立。专注于索尼产品在该国的销售和营销。由日本或东京公司于 1946 年 5 月 7 日推出。在现代,市场竞争非常激烈。因此,与竞争对手相比,品牌和服务产品有所差异。实际上,每个人都试图在自己的品牌中拥有独特的功能并进行营销。消费者认知是在消费者心中打造品牌名称的最重要因素。如果组织想要在这个领域取得成功,他们需要诚实地评估他们的品牌,否则类似的模仿品牌会出现在市场上,这可能会摧毁他们的整个营销努力。
1 Mar Ephraem工程技术学院CSE系,Marthandam 629171,印度泰米尔纳德邦; leninfred@marephraem.edu.in(a.l.f. ); fredin.givo@yahoo.in(F.A.S.G。) 2 Amal Jyothi工程学院EEE系,坎吉拉帕利686518,印度喀拉拉邦; appu123kumar@gmail.com 3 MAR ECE,MAR EPHRAEM工程技术学院,Marthandam 629171,印度泰米尔纳德邦; ajay@marephraem.edu.in.在印度泰米尔纳德邦Vellore 632014的Vellore Technology Institute of Vellore Institute of Beginative Biology系; sayantan7@gmail.com 5新加坡新加坡Nanyang Technological University的认知神经影像中心,新加坡; pbharishita@gmail.com(H.P.B. ); simw0035@e.ntu.edu.sg(W.K.J.S. ); vimalan.vijay@ntu.edu.sg(V.V. ); veikko.jousmaki@aalto 6 Nanyang Technological University,新加坡636921,新加坡7 Aalto神经影像学,神经科学与生物医学工程系,AALTO大学,12200 ESPOO,芬兰8号ESPOO,KAROLINSKA研究所,Karolinska Instutter,17176 Stockholm,Sweenneconcection: ppadmanabhan@ntu.edu.sg(P.P. ); balazs.gulyas@ntu.edu.sg(B.G.)1 Mar Ephraem工程技术学院CSE系,Marthandam 629171,印度泰米尔纳德邦; leninfred@marephraem.edu.in(a.l.f.); fredin.givo@yahoo.in(F.A.S.G。)2 Amal Jyothi工程学院EEE系,坎吉拉帕利686518,印度喀拉拉邦; appu123kumar@gmail.com 3 MAR ECE,MAR EPHRAEM工程技术学院,Marthandam 629171,印度泰米尔纳德邦; ajay@marephraem.edu.in.在印度泰米尔纳德邦Vellore 632014的Vellore Technology Institute of Vellore Institute of Beginative Biology系; sayantan7@gmail.com 5新加坡新加坡Nanyang Technological University的认知神经影像中心,新加坡; pbharishita@gmail.com(H.P.B. ); simw0035@e.ntu.edu.sg(W.K.J.S. ); vimalan.vijay@ntu.edu.sg(V.V. ); veikko.jousmaki@aalto 6 Nanyang Technological University,新加坡636921,新加坡7 Aalto神经影像学,神经科学与生物医学工程系,AALTO大学,12200 ESPOO,芬兰8号ESPOO,KAROLINSKA研究所,Karolinska Instutter,17176 Stockholm,Sweenneconcection: ppadmanabhan@ntu.edu.sg(P.P. ); balazs.gulyas@ntu.edu.sg(B.G.)2 Amal Jyothi工程学院EEE系,坎吉拉帕利686518,印度喀拉拉邦; appu123kumar@gmail.com 3 MAR ECE,MAR EPHRAEM工程技术学院,Marthandam 629171,印度泰米尔纳德邦; ajay@marephraem.edu.in.在印度泰米尔纳德邦Vellore 632014的Vellore Technology Institute of Vellore Institute of Beginative Biology系; sayantan7@gmail.com 5新加坡新加坡Nanyang Technological University的认知神经影像中心,新加坡; pbharishita@gmail.com(H.P.B.); simw0035@e.ntu.edu.sg(W.K.J.S.); vimalan.vijay@ntu.edu.sg(V.V.); veikko.jousmaki@aalto6 Nanyang Technological University,新加坡636921,新加坡7 Aalto神经影像学,神经科学与生物医学工程系,AALTO大学,12200 ESPOO,芬兰8号ESPOO,KAROLINSKA研究所,Karolinska Instutter,17176 Stockholm,Sweenneconcection: ppadmanabhan@ntu.edu.sg(P.P. ); balazs.gulyas@ntu.edu.sg(B.G.)6 Nanyang Technological University,新加坡636921,新加坡7 Aalto神经影像学,神经科学与生物医学工程系,AALTO大学,12200 ESPOO,芬兰8号ESPOO,KAROLINSKA研究所,Karolinska Instutter,17176 Stockholm,Sweenneconcection: ppadmanabhan@ntu.edu.sg(P.P.); balazs.gulyas@ntu.edu.sg(B.G.)
正常状态电导率和缺氧的临界温度YBA 2 Cu 3 O 7-δ可以通过照明持续增强。多年来一直有争议的是,这些影响的起源(称为持续的光电导率和照相动物(PPS))仍然是一个未解决的关键问题,其理解力可能会为利用高温超导性本身的起源提供关键的见解。在这里,我们为理解PPS迈出了重要步骤。到目前为止提出的模型假设它是由载体密度增加(光接种)引起的,但我们的实验与这种常规信念相矛盾:我们证明它与光诱导的电子散射率降低相关。此外,我们发现后一种效果和光接双完全断开并起源于不同的显微镜机制,因为它们呈现出不同的波长和氧气依赖性以及明显不同的弛豫动力学。除了有助于散开光电传动,持续的光电导率和PPS外,我们的结果还为临界温度与散射率之间的紧密关系提供了新的证据,这是现代理论的高温超导性的关键成分。