摘要。机身内部和外部规格是每个飞机制造商密集的智力努力和技术突破的产物。因此,表征飞机主要气动表面的几何信息仍处于保密状态。在尝试对真实飞机进行建模时,航空界的许多成员依靠他们的个人专业知识和通用设计原则来绕过保密障碍并绘制真实飞机翼型,因此由于不同的设计师的初始假设,同一架飞机的翼型会有所不同。本文提出了一种摄影测量形状预测方法,用于利用真实飞机机身的可公开访问的静态和动态视觉内容来推导其几何特性。该方法基于提取气动表面和机身之间整流罩区域的视觉上可区分的曲线。介绍了两个关于 B-29 和 B-737 的案例研究,展示了如何近似其机翼内侧翼型的截面坐标,并证明了复制翼型的几何和气动特性与其原始版本之间的良好一致性。因此,本文提供了一种系统的逆向工程方法,以增强飞机概念设计和飞行性能优化研究。
2024-2025主题:接受不完美的摄影形式:一张照片,全景,光(一张无缝的原始照片的无缝打印),多次曝光,负面三明治或摄影。接受原始的黑白和颜色图像。摄影的未接受形式:图像上附加图形的条目,包括刻字。不接受拼贴和照片集。原始电影(负胶或透明胶片)和多维作品。独创性:只能提交受主题启发的新艺术品。每个条目必须仅是一个学生的工作。数字技术和/或软件可用于开发,增强和/或呈现条目,但可能无法提供主要的设计和/或概念。参赛者必须简要说明创建过程中使用的工具,软件和方法。禁止使用算法技术或人工智能。考虑使用对象,照明和位置,以显示照片与主题的明确关系。版权:使用受版权保护的材料,包括受版权保护的卡通字符,计算机程序中创建的场景(即Minecraft)或其他此类材料在任何摄影提交中都不可接受,但图片可能包括公共场所,著名产品,商标或某些其他版权材料,只要受版权材料与该作品的主题相关,并且/或整个元素是较小的元素。演示:未接受框架照片。垫子被接受。由此产生的工作不能试图建立学生与商标/商业/材料之间的关联,也不能影响商标商品的购买/非购买。
摘要。机身内部和外部规格是每个飞机制造商密集的智力努力和技术突破的产物。因此,表征飞机主要气动表面的几何信息仍处于保密状态。在尝试对真实飞机进行建模时,航空界的许多成员依靠他们的个人专业知识和通用设计原则来绕过保密障碍并绘制真实飞机翼型,因此由于不同设计师的初始假设,同一架飞机的翼型会有所不同。本文提出了一种摄影测量形状预测方法,用于利用真实飞机机身的可公开访问的静态和动态视觉内容来推导其几何特性。该方法基于提取气动表面和机身之间的整流罩区域的视觉上可区分的曲线。介绍了 B-29 和 B-737 的两个案例研究,展示了如何近似机翼内侧翼型的截面坐标,并证明了复制翼型的几何和气动特性与原始版本之间的良好一致性。因此,本文提供了一种系统的逆向工程方法,将增强飞机概念设计和飞行性能优化研究。
摄影测量是从两张或多张照片中获取精确数学测量值和三维 (3D) 数据的艺术和科学。20 多年来,土地管理局一直受益于其内部摄影测量能力、支持和专业知识。这种支持包括创建独特且增值的数字数据集,并充当主题专家和承包官员代表以获取航空摄影和其他类型的 3D 数据。传统上,大多数人认为摄影测量是航空摄影的范畴。摄影测量技术几乎可以应用于任何图像源,无论是来自 35 毫米数码相机还是地球轨道卫星。只要以立体重叠的方式捕捉图像,就可以在非常广泛的范围内获得准确的 3D 数据。
计划委员会:英特尔公司(美国)的Frank E. Abboud; UWE F.W.Behringer,UBC微电子学(德国); Ingo Bork,西门子Eda(美国); Brian Cha,Entegris,Inc。(韩国,共和国); Sandeep Chalamalasetty,Micron Technology,Inc。(美国);三星电子公司Jin Choi(韩国,共和国); Aki Fujimura,D2S,Inc。(美国); Emily E. Gallagher,IMEC(比利时); lasertec USA Inc. Arosha W. Goonesekera(美国); Naoya Hayashi,Dai Nippon Printing Co.,Ltd。(日本); Henry H. Kamberian,Photronics,Inc。(美国); Bryan S. Kasprowicz,美国Hoya Corp.(美国); Eung Gook Kim,E-Sol,Inc。(韩国,共和国); Romain Lallement,IBM Thomas J. Watson Research Ctr。(美国);英特尔公司(美国)Ted Liang; Nihar Mohanty,Meta(美国);肯特·H·纳川(Kent H. Dong-Seok Nam,ASML(美国);高海·奥努(Takahiro Onoue),霍亚公司(Japan)(日本); Danping Peng,TSMC北美(美国); Jed H. Rankin,IBM Corp.(美国);道格拉斯·J·雷斯尼克(Douglas J. Resnick),佳能纳米技术公司(美国); Carl Zeiss Sms Ltd.(以色列)的Thomas Franz Karl Scheruebl; Ray Shi,KLA Corp.(美国); Jaesik Son,SK Hynix System Ic Inc.(韩国,共和国);西门子Eda(美国)的Yuyang Sun; lasertec U.S.A.,Inc。Zweigniederlassung Deutschland(德国)Anna Tchikoulaeva(德国);克莱尔·范·拉尔(Claire Van Lare),荷兰ASML B.V.(荷兰); Yongan Xu,Applied Materials,Inc。(美国); Yamamoto Kei,Fujifilm Corp.(日本); Seung-Hune Yang,三星电子有限公司(韩国,共和国); Nuflare Technology,Inc。(日本)舒斯助Yoshitake; Bo Zhao,Meta(美国); Larry S. Zurbrick,Keysight Technologies,Inc。(美国)
东非医学杂志卷。101号2024年11月11日,在肯尼亚Loise Ndirangu的选定五级医院新诊断为2型糖尿病的成年患者的自我保健习惯农业和技术,(JKUAT),邮政信箱62000-00200,内罗毕,肯尼亚,肯尼亚,华莱士·卡鲁古蒂,乔莫·肯雅塔大学农业与技术大学(JKUAT)P.O Box 62000-00200,肯尼亚内罗毕,肯尼亚,肯尼亚,LISTER ONSONGO,P.Onsongo,P.Obothoath,P.O Box,P.O Box 62000-00200。内罗毕,肯尼亚。通讯作者:洛斯·恩迪兰奇(Loise Ndirangu),乔莫·肯雅塔(JOMO KENYATTA)农业技术大学护理科学学院(JKUAT),邮政信箱62000-00200,肯尼亚内罗毕。电子邮件:nndirangu35@gmail.com
通过雾进行成像在诸如自动驾驶汽车,增强驾驶,飞行飞机,直升机,无人机和火车等工具中具有重要的应用。在这里我们表明,从雾反射的光的时间填充具有分布(伽马),该分布与从雾(高斯)遮住的物体所反映的光中不同。这有助于区分背景光子与雾和信号光子从遮挡物体反射的信号光子之间。基于此观察结果,我们恢复了被密集,动态和异质雾阻塞的场景的反射和深度。对于实际用例,成像系统以最小的占地面积为单位的反射模式设计,并基于LiDAR硬件。特别是,我们使用单个光子雪崩二极管(SPAD)摄像机,该摄像头将计入单个检测到的光子。在没有先验知识的情况下,开发了一个概率计算框架,以估计雾化本身的雾性特性。其他解决方案是基于雷达的,该雷达遭受分辨率较差(由于长波长)的障碍,或者按时门控遭受较低的信噪比。建议的技术在雾室中产生的多种雾密度中进行了实验评估。它在可见度为37厘米时演示了离相机57厘米的恢复对象。在这种情况下,它以5厘米的分辨率恢复了深度,并且场景反映了PSNR和3的4DB的反射。4×SSIM的重建质量随时间推移门控技术。4×SSIM的重建质量随时间推移门控技术。
抽象背景糖尿病相关足溃疡(DFU)试验的主要终点通常是时候进行愈合,定义为完全重新上皮化,而缺乏排水,需要临床专家评估作为黄金标准。内部有效性越来越多地进行确认治愈的中央盲人审查。糖尿病足溃疡摄影研究旨在确定盲目的独立审查小组成员在评估DFUS患者溃疡愈合状态之间的一致性。的方法和分析照片在临床评估的300名参与者中,临床评估或未治愈,这些参与者将被一个由四名具有溃疡愈合评估专业知识的临床医生组成的中央盲人小组独立审查。招聘站点的员工将使用标准化的相机和协议拍摄照片。照片将以三个层次的放大层次进行审查:原始图像,标准化为照片中包含的测量量表和标准化图像,并允许放大倍率。审稿人将评估康复状况及其在做出治愈判断方面的信心水平,并以较低的置信度等级报告。在每个放大层面上的分析将通过临床评估(主要)评估照片的愈合评估,并使用多变量逻辑混合模型估算理性和内部的可靠性。对康复和置信度评估评估的学习曲线的分析将使用指数和两相模型。道德和传播伦理批准。所有参与者将在招募各自研究之前提供书面知情同意书。照片将通过安全的文件传输服务转移到试验的协调中心,并保存在
密歇根大学的异质催化21世纪:定义良好,高统一,有针对性的纳米结构是高度选择性的异质催化剂,照片催化剂和表征工具